Subject: Re: Modifying an array while conserving memory
Posted by R.Bauer on Fri, 24 May 2002 09:49:14 GMT

View Forum Message <> Reply to Message

Randall Skelton wrote:

>

>>
>>
>>
>>

VVVVVVVVVVVVVVVVVVVVVVVYVYVYVYVYVYV

Why not using pointer:

ptrl = PTR_NEW(FINDGEN(1000))
insert = PTR_NEW(RANDOMU(seed,100))
a = PTR_NEW([(*ptr1)[0:499], (*insert), (*ptrl)[500:*]])

HELP,*a

The problem with using pointers as above is that you are not actually
using the pointer, but copying the data contained within. Take a look at
the heap after doing the above:

IDL> help, /heap
Heap Variables:
Pointer: 3
Object : O

<PtrHeapVarl> FLOAT = Array[1000]
<PtrHeapVar2> FLOAT = Array[100]
<PtrHeapVar3> FLOAT = Array[1100]

This shows that until | physically free the pointers 'ptrl' and 'insert’,
| have used exactly double the memory as | now have a copy of each
variable.

Rather than inserting the data into the middle, | would (at this point) be
happy enough just concatenating to arrays...

IDL> ptrl = PTR_NEW(FINDGEN(1000))

IDL> ptr2 = PTR_NEW(RANDOMU(seed,100))

IDL> a = [ptrl,ptr2]

IDL> print, *a ; fails

IDL> print, *(a) ; fails

IDL> print, *a(*) ; fails

IDL> print, *a[0] ; prints findgen(1000) (i.e. not what | want)
IDL> print, *(a)(*) ; fails... Score: IDL 5 ; Randall O

If you use my dref function

Pag

el of 3 ---- CGenerated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=2825
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=15751&goto=30871#msg_30871
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=30871
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

http://www.fz-juelich.de/icg/icg-i/idl_icglib/idl_source/idl _html/dbase/download/dref.tar.gz

; PURPOSE:

; This functions derefences pointers. If last dimension is 1 this is
returned and not the

; standard IDL Array without last dimension 1.

; If value is a array of pointer the values are concatinated by
concatinate_arrays at the last dimension

; If value isn't a pointer this value is returned but with the right
dimensions.

e.g.
IDL> help,dref(a)
<Expression> FLOAT = Array[1100]

e.g.:
IDL> help,dref(a,/free)
<Expression> FLOAT = Array[1100]

; free means ptr_free

this is solved but during operation the memory is double times
allocated.

regards
Reimar

Because IDL doesn't keep track of what type of data is in a pointer, the
above is protecting me from doing silly things:

IDL> ptrl = PTR_NEW/(FINDGEN(1000))
IDL> insert = ptr_new('test’)
IDL> a = [ptrl, insert]

Perhaps this is something for dim's. If | pass 'ptrl’, ‘insert' and the
indices for insertion into C | may be able to resize using 'ptrl' realloc,
shift the data around using pointers and trick the IDL variable structure
when sending the data back. This sounds risky but at this point all my
alternatives read, '% Unable to allocate memory: to make array'.

Cheers,
Randall

VVVVVVVVYVYVVYVYVYVYVYV

Page 2 of 3 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Reimar Bauer

Institut fuer Stratosphaerische Chemie (ICG-I)
Forschungszentrum Juelich
email: R.Bauer@fz-juelich.de
a IDL library at ForschungsZentrum Juelich
http:/www.fz-juelich.de/icg/icg1/idl_icglib/idl_lib_intro.h tml

Page 3 of 3 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

