Subject: Re: Eigenvalue problem

Posted by Randall Skelton on Fri, 05 Jul 2002 12:53:01 GMT

View Forum Message <> Reply to Message

Hi Georg,

I think I actually posted an answer to a similar question back in April. You may want to check the google group archive searching for 'Generalized Eigenvectors.'

Given that you have a positive definite, symmetric matrix you can convert to the tridiagonal form (TRIRED) and then use the QR procedure (TRIQL) to iteratively find the eigenvalues/vectors from the tridiagonal array.

IDL's eigenvector/value code is based on the Numerical recepies code (see the online text at www.nr.com) and assumes that you wish to solve

Ax = kx.

Solving the semantic 'general' case,

Ax = kBx

is equivilent to solving,

 $(B^{-1} A) x = kx.$

which his is what Matlab is doing. This is actually described under the 'Remarks' section of the mathworks page you listed.

Hope this helps, Randall

On Fri, 5 Jul 2002, Georg Wiora wrote:

- > Hi!
- >

>

- > I have a mathematical problem with eigenvalues and -vectors. I need a
- > special solution for the usual eigenvalue problem $A^*x = lambda^*x$ where
- > x is a vector and A a positive definite and symmetric real matrix.
- > Using the EIGENQL function in IDL you can easily compute the
- > eigenvectors and eigenvalues for that equation.
- > My problem is that I need a constrained solution in the form
- A*v = B*v*D
 A is again the matrix to find the eigenvalues for, B is the constraint matrix and v is the vector of
- > eigenvalues and D the matrix of eigenvectors.

```
> Matlab offers a function for that. Here is the excerpt from their online help:
    [V,D] = eig(A,B) produces a diagonal matrix D of generalized eigenvalues and
    a full matrix V whose columns are the corresponding eigenvectors so
    that A*V = B*V*D.
> (see http://www.mathworks.com/access/helpdesk/help/techdoc/ref/ei g.shtml for the full
documentation)
>
> Does anyone have an IDL-function that does the same job? Or does
> anyone know how to do it with the IDL matrix tools?
>
> Thanx for any advice!
>
> Georg Wiora
> DaimlerChrysler AG
> Research and Technology
> Ulm
> Germany
>
>
>
```

>