Subject: Re: bizarre number transformation
Posted by Paul Van Delst[1] on Thu, 25 Jul 2002 15:50:13 GMT

View Forum Message <> Reply to Message

merle wrote:
Hello,

| ran into a number transformation error yesterday that is still
confusing me this morning. At first | thought | was doing something
silly with String() & StrTrim(), but then | wrote a little program

(see huh.pro) with no conversions that still contained the problem.
FYI, I'm using IDL Version 5.5 Win32 (x86).

The problem is that the number 443496.984 is being turned into the
number 443496.969 from basic assignments using Float() or Double(),
despite the fact that even floats should easily be able to handle a
number this large (floats can handle "i¢%210738, with approximately six
or seven decimal places of significance").

VVVVVVVYVYVYVYVYVYVYV

Don't confuse the magnitude of the number with its precision. This all comes about because
most floating point numbers can't be represented exactly in binary (I say most because
numbers like 0.0 and 1.0 usually can. It's the stuff like 0.1 and 443496.984 that cause

the heartache). Numbers are stored with a mantissa (describes the actual number you want)
and an exponent (describes the, well, the exponent.). So, **assuming** that 7 significant
figures is a definite "cutoff" for precision, then

1.1e+37 == 2 significant figures. Precision probably good to 1.100000e+37
1.01e+37 == 3 significant figures. Precision probably good to 1.010000e+37

1.000001e+37 == 7 significant figures. At the limit of precision
etc..

and for your number

6.984 == 4 sigfig, good to 6.984000
96.984 == 5 sigfig, good to 96.98400
496.984 == 6 sigfig, good to 496.9840
3496.984 == 7 sigfig, good to 3496.984
43496.984 == 8 sigfig, good to 43496.98
443496.984 == 9 sigfig, good to 443496.9

So, if the 7 sigfig assumption is a good one (may not be), then if you set a single
precision value to 443496.984 and print it out, a result of 443496.9XX where the XX can be
anything is perfectly reasonable.

> And, why doesn't x2=Double(443496.984) produce the correct
> result?

Page 1 of 2 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4285
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=16000&goto=31484#msg_31484
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=31484
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Because 443496.984 is, again, a *single precision* literal constant. That is, you're
converting a single precision number (where the last 2 dp can be anything, see above) to a
double precision one. You'll then have a very precise, "nearly correct" number. As others
have pointed out you need to create the number as a double to begin with,

X2 = 443496.984d0

so that you'll have, say, 16-17 significant figures, or a number "good" to
443496.9840000000.

| reckon that, if in doubt, *always* use double precision for floating point variables.
There's nothing worse that trying to debug code and discovering weird results are related
to the precision of the represetation (well, maybe apart from an insidious compiler bug,
but that would nbever happen with IDL! :0)

> Could someone please explain this to me? Or at least duplicate this
> error so that | don't think that I'm going crazy?

You're definitely not bonkers. And, although it may not seem like it, you have
discovered/learned something very important (at least | think so).

paulv

Paul van Delst

CIMSS @ NOAA/NCEP/EMC Beer is good.
Ph: (301)763-8000 x7274 My wife.
Fax:(301)763-8545

Page 2 of 2 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

