
Subject: Re: Convert planetary sinusoidal map image to (lat,lon,value) array
Posted by JD Smith on Wed, 31 Jul 2002 01:15:36 GMT
View Forum Message <> Reply to Message

On Mon, 29 Jul 2002 11:27:08 -0700, David Fanning wrote:

> Ken Mankoff (mankoff@I.HATE.SPAM.cs.colorado.edu) writes:
>
>> I guess I'll give this a shot. Never done this but here is what I would
>> try first if I were doing it:
>
> Not too bad, not too bad. :-)
>
> It would certainly work something like this, *if* you could get an IDL
> map projection to work. I have my doubts about what a "sinusoidal equal
> area" projection is, but assuming it is the same thing as a sinusoidal
> projection in IDL, I would make a few modifications to your suggestions.
>
>> 1) Set up an identical map projection. The key word (no pun intended)
>> here is *identical*, so that every pixel of your new "sinusoidal equal
>> area" projection is the same as the BYTARR you have been given. If you
>> can't get it identical, I am not sure what to do next.
>>
>> You can test if it is identical via:
>> IDL> WINDOW, XSIZE=1440, YSIZE=720
>> IDL> MAP_SET, 0, 0, /SIN, /ISO
>> IDL> TV, sinusoidal_projection
>> IDL> MAP_GRID & MAP_CONTINENTS & MAP_HORIZON
>>
>> Does the border created by MAP_HORIZON line up exactly (to the pixel)
>> with the data your data from the TV command? Look up the keywords to
>> MAP_SET if not, and try other projections...
>
> I would add MARGIN=0 and NOBORDER=1 keywords to the MAP_SET command. And
> if I knew (or could figure out) the lat/lon coordinates of the corners
> of the image I would add the 8-element version of the LIMIT keyword as
> well. Then there is a reasonably good chance the map might match the
> image.
>
> You could set up the map coordinates in a pixmap if you didn't want to
> see something happening on the display. Just make the pixmap the same
> size as your image, etc.
>
>> 2) Redo the above code, but stop after the TV command so its just your
>> data, nothing extra. You don't actually need a window, but you need the
>> MAP_SET command to be run (with the correct 1440,720 sizes) so that IDL
>> defines the map coordinate system. You are going to use this later to
>> convert between (x,y) pixels and (lat,lon) degrees.

Page 1 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3377
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=16063&goto=31626#msg_31626
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=31626
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>>
>> 3) Set up the new array you want to put your data into. I suggest a
>> cylindrical 'projection', which can then be warped to any other
>> projection you want. So...
>> IDL> new_array = BYTARR(1440, 720)
>
> I would just leave it in its current projection, assuming this is the
> correct one.
>
>> 4) Step through every (x,y) pixel in your image.
>
> Since the original poster indicated that he was only interested in
> non-zero values, I would just work with those.
>
>> FOR x=0,1439 DO BEGIN
>> FOR y=0,719 DO BEGIN
>> 	aPixel = sinusoidal(x, y)
>> 	IF (aPixel NE 0) THEN BEGIN ; not a valid (lat,lon) coord.
>> 	 latlon = CONVERT_COORD(x, y, /device, /to_data) new_array[
>> 	 latlon[0], latlon[1]] = aPixel
>> ENDIF
>> ENDFOR
>> ENDFOR
>
> I would do it something like this:
>
> indices = Where(sinusoidal_projection GT 0, count) IF count EQ 0 THEN
> Message, 'Whoops. Somethin gone wrong!!' x = indices MOD 1439 y =
> indices / 1439

I think you meant 1440.

> latlon = CONVERT_COORD(x, y, /DEVICE, /TO_DATA)
>
> Now, the information you want is in latlon.

Not to oversimplify, but the sinusoidal projection is given by:

 x = longitude*cos(latitude)
 y = latitude

You just need the inverse of this simple transform.

The y transform is trivial: knowing the range of latitude present in your
grid (lat_high and lat_low), you can write:

IDL> lat=findgen(720)/719*(lat_high-lat_low)+lat_low

Page 2 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

OK, now you have the latitude for each row in your image. Given the known
range of longitudes present in your grid (lon_low to lon_high), you can
calculate:

IDL> lon=(findgen(1440,720) mod 1440/1439*(lon_high-lon_low)+lon_low)/ $
 rebin(reform(cos(lat),1,720),1440,720)

Here I've simply linearly mapped the full range of x to the full range of
longitude (which is only valid at the equator), then divided by a suitably
inflated cos(lat). This will of course contain spurious values for the
longitude in the corners, which you can clip with:

IDL> lon[where(lon gt lon_high OR lon lt lon_low)]=!VALUES.F_NAN

And you might convince yourself it's right with:

IDL> WINDOW, XSIZE=1440, YSIZE=720
IDL> tmp=lon & tmp[where(finite(tmp) eq 0b)]=0. & tvscl,tmp

Try this with:

IDL> lat_low=-!PI/2 & lat_high=!PI/2 & lon_low=-!PI & lon_high=!PI

and you'll see a lovely map of longitude over the full globe. This also
reveals that the other suggested method (convert_coord) fails, without the
all-important POSITION keyword:

IDL> map_set,0,0,/SIN,/ISO,/NOBORDER,/NOERASE,POSITION=[0.,0.,1., 1.]
IDL> map_continents
IDL> map_horizon
IDL> map_grid,LONDEL=15,LATDEL=1

Remember that near the poles, cos=0, and the longitude is singular. What
this means in practice is that in these regions the longitude mapping is
much less certain, and subject to a greater degree of roundoff-induced
error, etc. The lat-lon bins are also severely distorted.

Good luck,

JD

Page 3 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

