
Subject: Re: mesh clipping
Posted by lyubo on Sat, 31 Aug 2002 11:14:31 GMT
View Forum Message <> Reply to Message

Hi Karl,

I actually ended up splitting the mesh into 3 different polygons and
displaying them separately, but your post clarified a lot of things. I
can see the seem between different polygons because the mesh is
shaded, but it isn't that bad.

I wasn't able to get the alpha blending working with a shaded mesh
and if I have to rearrange the connectivity list myself I want to stay
away from it. Even if I get it to work I definitely wont be able to cut
the mesh interactively simply because it is a huge mesh. Even if I
decimate it the rearranging will take a long time.

Lyubo

"Karl Schultz" <kschultz@devnull.researchsystems.com> wrote in message
news:akjl6uaok1@news.rsinc.com...
>
> "Rick Towler" <rtowler@u.washington.edu> wrote in message
> news:akitis$20o6$1@nntp6.u.washington.edu...
>>
>> "lyubo" <lzagorch@cs.wright.edu> wrote
>>
>>> Rick, you were right. I really want to slice the mesh up interactively
>>> and that's why I was trying to clip it to a plane.
>
> One question to ask is if you want to actually clip your model - the data,
> or just provide a visual clip.
>
> You can easily clip the model with MESH_CLIP, but I think the OP said in
the
> first posting that merging them was too slow. Would it be possible to
avoid
> the merge and just display the clipped pieces? Is it important to merge
the
> pieces for some reason??? I don't know your data, but I can imagine many
> circumstances where you can just display each part in its own IDLgrPolygon
> and end up with something that looks the same as a single merged mesh.
> Hopefully your data is small enough so that MESH_CLIP is still fast enough
> to be interactive.
>
> Visually, there is very little difference between displaying a (wire) mesh
> with one or with several IDLgrPolygon objects.

Page 1 of 5 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4255
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=16185&goto=31925#msg_31925
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=31925
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>
> For example, if you had one vertex list and one connectivity list with
just
> triangles in it:
>
> verts = FLTARR(3,100) ; 100 verts
> conn = LONARR(4 * 50) ; 50 triangles
>
> ; fill in arrays
> ...
> ; create objects
>
> oPoly1 = OBJ_NEW('IDLgrPolygon', verts, conn[0:99])
> oPoly2 = OBJ_NEW('IDLgrPolygon', verts, conn[100:*])
>
> The visual appearance of these two meshes should be pretty
indistinguishable
> from a single mesh formed from the entire 'conn' list with a couple of
> exceptions. You'll probably see a seam if you are doing filled polygons
> with smooth shading. The seam would be easier to notice if the normals of
> the polygons on either side of the seam are very different from each
other.
> But if you are doing wire frame, you should be alright. And if you used
> alpha blending, the order makes a difference, as Rick is pointing out.
>
> And yes, you can use the viewport and Z clip planes to do some visual
> clipping, but that would be pretty limited.
>
>
>>> I guess alpha blending
>>> will be faster but the question that I have here is how can I use
alpha
>>> blending with a mesh? I thought that I can apply alpha blending only
to
>>> texture mapped polygons, by using an alpha image as texture. With
>>> the mesh I don't have any texture. I will try to find examples on the
> net,
>>> I just wanted to thank you for your reply.
>>
>> Ahh, you have a wire mesh....
>>
>> You are *mostly* correct in thinking that you need to work with texture
>> mapped solid polygons to use alpha blending. In IDL 5.5 there is a bug
> that
>> allows you to texture wireframe models. But, before we go there, you
need
>> to texture your polygon first...
>>

Page 2 of 5 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>> For now, work with a solid polygon. Let's assume you want to draw your
>> polygon in grey. Create a instance of IDLgrImage with this texture
data:
>>
>> imagedat = [[180,180,180,255],[180,180,180,0]]
>>
>> Use this image object to texture your polygon.
>>
>> The trick will be setting up the texture coordinates. Your texcoords
> array
>> will be a 2xn array where n is the number of verticies in your mesh and
> each
>> coordinate pair maps a pixel in your image to a vertex in your mesh.
So,
>> for verticies you want "on" you will give it a texcoord of [0,0] and for
>> verts you want off, [0,1] (or is it [1,0]? Well, you get the idea).
>>
>> There are a few things to watch out for. One is that if I remember
>> correctly, I don't actually use texcoords of 0 or 1 to assign pixels at
> the
>> edge of my texture. I ended up using 0.001 and 0.999. Unfortunatly I
>> can't remember why...
>>
>> A second issue will be that you will not have a cleanly defined edge
along
>> your slices. IDL will blend from opaque to transparent giving you a
> "soft"
>> edge. This may be a result of the type of shading used though..
>>
>> And then there is the order in which the polygon is drawn. It has to be
>> drawn back to front. And if you rotate it 180 degrees you draw it back
to
>> front, which turns out to be front to back. I usually end up slicing my
>> mesh into a +z portion and -z portion and then keep track of where the
>> camera is and flip the two objects in my model when the camera crosses
the
>> xy plane.
>
> I think that this is going to be a real show-stopper if we are talking
about
> general meshes. In the most general sense, you'd have to sort your
vertices
> by VIEWPORT Z (not model Z) if the orientation of the model changes for a
> frame. (By "sort", I mean arrange your connectivity list so that the
> polygons that are most distant from the viewer are drawn first.) Unless
the
> data is constrained to be something more simple, like a sphere or being
> convex, this is a very difficult problem to solve.

Page 3 of 5 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>
> We got away with this in the pimento case because it was a simple sphere.
>
> I've seen some apps chop models into 8 "octants" and change the order they
> are drawn based on orientation to the viewer, which I guess is a pretty
> decent approximation.
>
> But in general, the alpha approach is going to be a pretty hard way to do
> this. I'd try to use the MESH_CLIP approach. Perhaps you can create a
mesh
> with very few polygons in it (with MESH_DECIMATE) to use while your user
is
> sliding a clip plane interactively. When they "let go", display the final
> clipped mesh with the original model. There may be other techniques.
>
>>
>>
>> Ahh, the wire mesh... Like I said, IDL 5.5 has a bug where wire mesh
>> polygons can be textured. It just doesn't work as expected. But you
> should
>> be able to get it to work. Start with the solid and get that working...
>
> This problem is fixed in 5.6. IDL 5.5 did not support texturing point or
> line polygons, but if you tried it, the texture coordinates were being
> ignored which made this "feature" hard to use. You can do some really
cool
> things with this in IDL 5.6, if you like modulating colors along a line.
>
>>> As far as my graphics adapter, I use Nvidia GeForce3 on a P4 2.0GHz
>>> dual processor with 512Mb Ram platform. Which graphic adapters
>>> support rendering of volumes?
>>
>> That I can't answer. We don't do volumes so I haven't ever investigated
>> this. I can tell you that the high end consumer cards like your GF3 are
>> optimized for gaming. They concentrate on fill rate first, then polygon
>> count. If there is any support for volumes it is WAY down the list.
>
> It is to the point where some companies sell dedicated volume-rendering
> graphics adapters that use special hardware for volumetric rendering.
> Volumetric rendering is a completely different approach to rendering as
> compared to polygonal rendering, in the same way ray-tracing is also
> different from polygonal rendering. The volume renderer built into
> IDLgrVolume uses a software ray-casting approach to create the image,
which
> is pretty compute-intensive. OpenGL acceleration has no impact on
rendering
> IDL volumes, except when blitting the (2D) result to the screen.
>

Page 4 of 5 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>
>
>

Page 5 of 5 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

