Subject: Re: mesh clipping
Posted by lyubo on Sat, 31 Aug 2002 11:14:31 GMT

View Forum Message <> Reply to Message

Hi Karl,

| actually ended up splitting the mesh into 3 different polygons and
displaying them separately, but your post clarified a lot of things. |
can see the seem between different polygons because the mesh is
shaded, but it isn't that bad.

| wasn't able to get the alpha blending working with a shaded mesh
and if I have to rearrange the connectivity list myself | want to stay
away from it. Even if | get it to work | definitely wont be able to cut
the mesh interactively simply because it is a huge mesh. Even if |
decimate it the rearranging will take a long time.

Lyubo

"Karl Schultz" <kschultz@devnull.researchsystems.com> wrote in message
news:akjl6uaokl@news.rsinc.com...

>

> "Rick Towler" <rtowler@u.washington.edu> wrote in message

> news:akitis$2006$1@nntp6.u.washington.edu...

>>

>> "lyubo" <lzagorch@cs.wright.edu> wrote

>>

>>> Rick, you were right. | really want to slice the mesh up interactively
>>> and that's why | was trying to clip it to a plane.

>

> One question to ask is if you want to actually clip your model - the data,
> or just provide a visual clip.
>
>

You can easily clip the model with MESH_CLIP, but I think the OP said in
the
> first posting that merging them was too slow. Would it be possible to
avoid
> the merge and just display the clipped pieces? Is it important to merge
the

VVVVYVYVYVYV

pieces for some reason??? | don't know your data, but | can imagine many
circumstances where you can just display each part in its own IDLgrPolygon
and end up with something that looks the same as a single merged mesh.
Hopefully your data is small enough so that MESH_CLIP is still fast enough
to be interactive.

Visually, there is very little difference between displaying a (wire) mesh
with one or with several IDLgrPolygon objects.

Page 1 of 5 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4255
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=16185&goto=31925#msg_31925
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=31925
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>
> For example, if you had one vertex list and one connectivity list with
just

> triangles in it:

verts = FLTARR(3,100) ; 100 verts
conn = LONARR(4 * 50) ; 50 triangles

; fill in arrays
; Create objects

oPolyl = OBJ_NEW(IDLgrPolygon’, verts, conn[0:99])
oPoly2 = OBJ_NEW('IDLgrPolygon’, verts, conn[100:*])

VVVVVVVYVYVVYV

> The visual appearance of these two meshes should be pretty
indistinguishable
> from a single mesh formed from the entire ‘conn’ list with a couple of
> exceptions. You'll probably see a seam if you are doing filled polygons
> with smooth shading. The seam would be easier to notice if the normals of
> the polygons on either side of the seam are very different from each
other.
But if you are doing wire frame, you should be alright. And if you used
alpha blending, the order makes a difference, as Rick is pointing out.

>
>
>
> And yes, you can use the viewport and Z clip planes to do some visual
> clipping, but that would be pretty limited.

>

>

>>> | guess alpha blending

>>> will be faster but the question that | have here is how can | use
alpha

>>> blending with a mesh? | thought that | can apply alpha blending only
to

>>> texture mapped polygons, by using an alpha image as texture. With
>>> the mesh | don't have any texture. | will try to find examples on the

> net,

>>> | just wanted to thank you for your reply.

>>

>> Ahh, you have a wire mesh....

>>

>> You are *mostly* correct in thinking that you need to work with texture
>> mapped solid polygons to use alpha blending. In IDL 5.5 there is a bug
> that

>> allows you to texture wireframe models. But, before we go there, you
need

>> to texture your polygon first...

>>

Page 2 of 5 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>> For now, work with a solid polygon. Let's assume you want to draw your
>> polygon in grey. Create a instance of IDLgrimage with this texture
data:

>>

>> imagedat = [[180,180,180,255],[180,180,180,0]]

>>

>> Use this image object to texture your polygon.

>>

>> The trick will be setting up the texture coordinates. Your texcoords

> array

>> will be a 2xn array where n is the number of verticies in your mesh and
> each

>> coordinate pair maps a pixel in your image to a vertex in your mesh.
So,

>> for verticies you want "on" you will give it a texcoord of [0,0] and for

>> verts you want off, [0,1] (or is it [1,0]? Well, you get the idea).

>>

>> There are a few things to watch out for. One is that if | remember

>> correctly, | don't actually use texcoords of 0 or 1 to assign pixels at

> the

>> edge of my texture. | ended up using 0.001 and 0.999. Unfortunatly |
>> can't remember why...

>>

>> A second issue will be that you will not have a cleanly defined edge
along

>> your slices. IDL will blend from opaque to transparent giving you a

> "soft"

>> edge. This may be a result of the type of shading used though..

>>

>> And then there is the order in which the polygon is drawn. It has to be
>> drawn back to front. And if you rotate it 180 degrees you draw it back
to

>> front, which turns out to be front to back. | usually end up slicing my
>> mesh into a +z portion and -z portion and then keep track of where the
>> camera is and flip the two objects in my model when the camera crosses
the

>> xy plane.

>

> | think that this is going to be a real show-stopper if we are talking
about

> general meshes. In the most general sense, you'd have to sort your
vertices

> by VIEWPORT Z (not model Z) if the orientation of the model changes for a
> frame. (By "sort", | mean arrange your connectivity list so that the

> polygons that are most distant from the viewer are drawn first.) Unless
the

> data is constrained to be something more simple, like a sphere or being
> convex, this is a very difficult problem to solve.

Page 3 of 5 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>
>
>
>
>
>
>
>
>

We got away with this in the pimento case because it was a simple sphere.

I've seen some apps chop models into 8 "octants" and change the order they
are drawn based on orientation to the viewer, which | guess is a pretty
decent approximation.

But in general, the alpha approach is going to be a pretty hard way to do
this. I'd try to use the MESH_CLIP approach. Perhaps you can create a

mesh

>

IS

>
>
>

with very few polygons in it (with MESH_DECIMATE) to use while your user

sliding a clip plane interactively. When they "let go", display the final
clipped mesh with the original model. There may be other techniques.

>>

>>

>> Ahh, the wire mesh... Like | said, IDL 5.5 has a bug where wire mesh
>> polygons can be textured. It just doesn't work as expected. But you

>

should

>> pe able to get it to work. Start with the solid and get that working...

>
>
>
>

This problem is fixed in 5.6. IDL 5.5 did not support texturing point or
line polygons, but if you tried it, the texture coordinates were being
ignored which made this "feature" hard to use. You can do some really

cool

>
>

things with this in IDL 5.6, if you like modulating colors along a line.

>>> As far as my graphics adapter, | use Nvidia GeForce3 on a P4 2.0GHz
>>> dual processor with 512Mb Ram platform. Which graphic adapters
>>> support rendering of volumes?

>>

> That | can't answer. We don't do volumes so | haven't ever investigated

>> this. | can tell you that the high end consumer cards like your GF3 are
>> optimized for gaming. They concentrate on fill rate first, then polygon
>> count. If there is any support for volumes it is WAY down the list.

>
>
>
>
>
>
>

It is to the point where some companies sell dedicated volume-rendering
graphics adapters that use special hardware for volumetric rendering.
Volumetric rendering is a completely different approach to rendering as
compared to polygonal rendering, in the same way ray-tracing is also
different from polygonal rendering. The volume renderer built into
IDLgrVolume uses a software ray-casting approach to create the image,

which

>

is pretty compute-intensive. OpenGL acceleration has no impact on

rendering

>
>

IDL volumes, except when blitting the (2D) result to the screen.

Page 4 of 5 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Page 5 of 5 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

