Subject: Re: HELP: Multiple-file Applications
Posted by djackson on Tue, 06 Dec 1994 16:05:45 GMT

View Forum Message <> Reply to Message

James Tappin writes:

> However if your code is a routine rather than a main program then you
> can use CALL_PROCEDURE or CALL_FUNCTION to compile (if not already
> compiled) and execute it (these are more efficient than EXECUTE).

Norbert Hahn writes:

> | played a little with CALL_PROCEDURE and it seems to do what you like.
> | wrote

> sub =‘fader'

> and typed

> call_procedure, sub, out=0.25

[note: I'm not actually worried about variable procedure compilation,
| know what | want to be compiled, but _when/if _ it's compiled
IS to be left to run-time. No harm done, it's the same
otherwise.]

and noticed that fader.pro was found in the search path, compiled and
executed.

Note that IDL only compiles those procedure that haven't been compiled
before in this session

and

that IDL only compiles the file including all procedure contained there
until it has reached the END statement of the procedure requested.

Thus, if you have nested procedures, it is best to put the outermost
procedure (that's the one you call explicitly) at the end of the file.

VVVVVVVYVYVYVYVYVYV

This sounds good, and | didn't come to the same conclusion, since |
confused myself (and found another 'gotcha’ here) by writing these test
routines, caller.pro and helper.pro: (bear with me!)

pro caller
a = randomu(seed) + 1.0
help, a, helper(a)

Page 1 of 3 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=334
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=2261&goto=3204#msg_3204
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=3204
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

pre_pre_helper, a
help, pre_helper(a)
end

pro pre_pre_helper, x
print, "In pre_pre_helper, X =", x
end

function pre_helper, x
return, x+42.4242
end

function helper, x
return, pre_helper(x)/2.02
end

function post_helper, x
return, -x
end

Then, to test them in a fresh IDL session:

IDL> caller

% Compiled module: CALLER.

% Compiled module: HELPER.

A FLOAT = 1.23121
<Expression> FLOAT = 21.6116
In pre_pre_helper, X = 1.23121

---***___ OK, in CALLER, that one was compiled as a procedure call,
then the procedure was compiled.

% Variable is undefined: PRE_HELPER.

---***___ This is the 'gotcha’: when CALLER was compiled, PRE_HELPER
looked

like an array variable, since no function yet existed, |
suppose.

% Execution halted at CALLER <caller.pro(7)>.
% Called from $MAINS .

IDL> help,pre_helper(3)

<Expression> FLOAT = 45.4242

IDL> help,post_helper(3)

% Variable is undefined: POST_HELPER.

Page 2 of 3 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

% Execution halted at CALLER <caller.pro(7)>.
% Called from $SMAINS .
IDL>

So, having multiple routines in a 'subordinate’ file, and calling the
last one found in there first, will cause all the others to work
thereafter, unless there are functions, in which case they'll look like
array variables. It's a bit constraining, but if | keep it strictly
modular, so only the last pro/function in the 'subordinate’ file is
called from outside, then I'll be OK.

Thanks so far, any other tips? There must be lots of big widget-app
builders out there.

Cheers,
-Dick

Dick Jackson djackson@ibd.nrc.ca Institute for Biodiagnostics
Opinions are mine alone. National Research Council Canada, Winnipeg

Page 3 of 3 ---- Generated from conp. |l ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

