Subject: Re: Pointer Behavior Objects Vs Plain routines?
Posted by JD Smith on Wed, 11 Sep 2002 15:55:17 GMT

View Forum Message <> Reply to Message

On Wed, 11 Sep 2002 08:17:14 -0700, David Fanning wrote:

> savoie@nsidc.org (savoie@nsidc.org) writes:

>

>> 0O.k. I'm looking at some pointer weridness. Well, I'm calling it
>> weirdness because | obviously don't understand something that is
>> happening. There are two examples below.

>>

>> The first is just two routines. test: creates a pointer, calls

>> changePtr with a null pointer as an argument; and changePtr: which just
>> assigns a string the the passedPtr. This examples shows that if you
>> pass a pointer to a procedure, assign something to that pointer, you
>> can retrieve it after exit.

>>

>>

>> The rest of the routines are a simple object with a couple of methods,
>> showing exactly the opposite effect. When the object's CHANGEPTR
>> method is called, self.myptr doesn't seem to be able to be changed on
>> return.

The problem here has nothing to do with either pointers or objects. The
problem is that structure dereferences (l.e., self.myptr) are passed by
value, whereas passing the pointer itself (l.e., myptr) is passed by
reference. Procedures can change things that are passed by reference.
They work on *copies* of things that are passed by value.

VVVVYVYVYVYVYV

This is the problem, but I think it's also instructive to understand why
exactly it's *not* related to pointers, which otherwise shouldn't care
about by-value or by-reference, since they point to an area of global
heap.

In DOIT, you say:
ptrinside = ptr_new('Why can not | change this?')

With this statement, you are *not*, as you might think, changing the value
of the pointer contained in the argument variable “ptrinside’ (which
happens to be the same as the “self.myptr' instance variable). You are
changing the value of the "ptrinside’ variable itself. You have assigned

it to a new pointer! Had “self.myptr' already had something in it (i.e.

been a "valid" pointer), you could have said:

Page 1 of 2 ---- Generated from conp. | ang.idl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3377
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=16252&goto=32075#msg_32075
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=32075
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

*ptrinside="Why can not | change this?"

and actually changed the value in “self.myptr'. In your case, the

variable “ptrinside' disappears from the world forever when DOIT returns:
you've just created a memory leak. Note that you can arrange to avoid the
pass-by-value structure problem, with something like:

PRO WEIRD::CHANGEPTR
ptr=self.myptr
self -> dolt, ptr
self.myptr=ptr

END

But this doesn't help: either way you risk a memory leak, since only one
of the two pointers created would still be accessible.

David's suggested method is the way to go.
Good luck,

JD

Page 2 of 2 ---- Generated from conp. |l ang. i dl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php

