Subject: Re: Chunk Array Decimation
Posted by JD Smith on Thu, 03 Oct 2002 00:03:55 GMT

View Forum Message <> Reply to Message

On Tue, 01 Oct 2002 14:34:21 -0700, Wayne Landsman wrote:

>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>

VVVVVVVVVVVVVVVVYVYVYVYVYV

\

Of course, anyone familiar at all with histogram() would realize
there's a better route when many indices are repeated:

mx=max(inds)

vec3=fltarr(mx+1)

h=histogram(inds,reverse_indices=ri,OMIN=0m) for

j=0L,n_elements(h)-1 do if rifj+1] gt ri[j] then $
vec3[j+om]=total(data]ri[ri[j]:ri[j+1]-1]])

This taps into the ever-so useful reverse indices vector to pick out
those elements of data which fall in each "bin" of the index histogram.
Notice I'm using OMIN to save time in case the minimum index is
greater than 0. This is much faster than the where() method, and can
be a factor of 2 or 3 faster than the literal loop approach, if indices
are repeated at least a few times on average (a few drops in each
histogram bin). If indices are never repeated, or especially if many
indices are skipped (a *sparse* set), the literal loop method can be
much faster than histogram.

The problem that discussed by JD is actually a very practical one, that
can be used in "drizzling" algorithms (e.qg.
http://www-int.stsci.edu/~fruchter/dither/drizzle.html) This a

method of combining or warping images that preserves flux -- every pixel
in the input image is equally represented in the output image. Instead

of starting with an input pixel and mapping to an output image (e.g. as
with POLY_2D) , one starts with an output pixel and determines which
input pixels get mapped into it. The flux conservation property is

one very dear to astronomers, and for which there are no existing IDL
tools.

My solution to the problem combined the REVERSE_INDICIES aproach of JD,
with the "accumlate based on the index" approach. For the drizzle

problem, one is probably only going to sum at most 3-4 pixels together,

so it makes sense to loop over the number of distinct histogram values

(i.e. loop only 3-4 times).

My solution is below, but | have to admit that | haven't looked at it
for a while.

h = histogram(index,reverse = ri,min=0,max=N_elements(vector)-1)

Pag

el of 4 ---- CGenerated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3377
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=16343&goto=32326#msg_32326
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=32326
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

;Add locations with at least one pixel
gmax = max(h) ;Highest number of duplicate indicies

for i=1,gmax do begin
g = where(h GE i, Ng)
if Ng GT 0 then vector[g] = vector[g] + values[ri[ri[g]+i-1]]
endfor

VVVVYVYVYVYVYV

end

That's a very interesting approach, Wayne. People who need to understand
the reverse indices vector would do well to study this one. | put it
into the same terms as my problem for testing:

mx=max(inds)
vecS=fltarr(mx+1)
h=histogram(inds,REVERSE_INDICES=ri,omin=0m)
gmax = max(h) ;Highest number of duplicate indicies
for j=1,gmax do begin

g = where(h GE |, Ng)

if Ng GT 0 then vec5[om+g] = vec5[om+g] + data]ri[ri[g]+j-1]]
endfor

| was interested to see that your method beat mine for normal

densities by about a factor of 2! This should provide some cannon
fodder for Craig in his loop-anti-defamation campaign: keep loops

small, and they're not bad. The only change | added was using OMIN as
opposed to fixing MIN=0, but that shouldn't account for much if any
improvement.

However, one thing still bothered me about the your method: even
though the loop through the bin depth is small (e.g. maybe up to 5-10
for DRIZZLE-type cases), you're using WHERE to search a potentially
very large histogram array linearly each time. What's the solution?
Why, just use another histogram to sort the histogram into bins of
repeat count, of course. Now this is a true histogram of a histogram.

mx=max(inds)

vec6=fltarr(mx+1)

h1l=histogram(inds,reverse_indices=ril,OMIN=0m)

h2=histogram(h1,reverse_indices=ri2,MIN=1)

;; easy case - single values w/o duplication

if ri2[1] gt ri2[0] then begin
vec_inds=ri2[ri2[0]:ri2[1]-1]
vec6[om+vec_inds]=data[ril[ril[vec_inds]]]

endif

for j=1,n_elements(h2)-1 do begin
if ri2[j+1] eq ri2[j] then continue ;none with that many duplicates

Page 2 of 4 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

vec_inds=ri2[ri2[j]:ri2[j+1]-1] ;indices into hl
vinds=om+vec_inds
vec_inds=rebin(ril[vec_inds],h2[j],j+1,/SAMPLE)+ $
rebin(transpose(lindgen(j+1)),h2[j],j+1,/SAMPLE)
vec6[vinds]=vec6|vinds]+total(data[ril[vec_inds]],2)
endfor

This is absolutely the fastest I've seen... faster by a factor of ~2
than DRIZZLE. Here are some timings again, for the curious:

20,000 Indices

Indices repeated once, on average:

WHERE loop: 3.8967
Literal Accumulate Loop: 0.0250
Reverse Indices Loop: 0.0725
Loop-Free with Sparse Arrays: 0.0136
FDDRIZZLE Loop: 0.0107
Dual Histogram Loop: 0.0077

Repeated 5 times, on average:

WHERE loop: 0.9433
Literal Accumulate Loop: 0.0241
Reverse Indices Loop: 0.0214
Loop-Free with Sparse Arrays: 0.0102
FDDRIZZLE Loop: 0.0069
Dual Histogram Loop: 0.0041

Repeated 20 times, on average:

WHERE loop: 0.2510
Literal Accumulate Loop: 0.0246
Reverse Indices Loop: 0.0063
Loop-Free with Sparse Arrays: 0.0095
FDDRIZZLE Loop: 0.0075
Dual Histogram Loop: 0.0033

Repeated 50 times, on average:

WHERE loop: 0.1016
Literal Accumulate Loop: 0.0246
Reverse Indices Loop: 0.0032
Loop-Free with Sparse Arrays: 0.0094
FDDRIZZLE Loop: 0.0079
Dual Histogram Loop: 0.0033

Page 3 of 4 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Only 1 in 5 indices present (WHERE loop omitted -- too slow):

Literal Accumulate Loop:
Reverse Indices Loop:

Loop-Free with Sparse Arrays:

FDDRIZZLE Loop:
Dual Histogram Loop:

Only 1 in 20 indices present:

Literal Accumulate Loop:
Reverse Indices Loop:

Loop-Free with Sparse Arrays:

FDDRIZZLE Loop:
Dual Histogram Loop:

Only 1 in 50 indices present:

Literal Accumulate Loop:
Reverse Indices Loop:

Loop-Free with Sparse Arrays:

FDDRIZZLE Loop:
Dual Histogram Loop:

Thanks for the pointer.

JD

0.0275
0.1754
0.0453
0.0264
0.0196

0.0334
0.4785
0.1471
0.0623
0.0530

0.0419
1.0674
0.3461
0.1289
0.1127

Page 4 of 4 ---- Cenerated from

conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

