Subject: Re: Chunk Array Decimation
Posted by Wayne Landsman on Tue, 01 Oct 2002 21:34:21 GMT

View Forum Message <> Reply to Message

Of course, anyone familiar at all with histogram() would realize
there's a better route when many indices are repeated:

mx=max(inds)

vec3=fltarr(mx+1)

h=histogram(inds,reverse_indices=ri, OMIN=0m)

for j=0L,n_elements(h)-1 do if ri[j+1] gt ri[j] then $
vec3[j+om]=total(data[ri[ri[j]:ri[j+1]-1]])

>
>
>
>
>
>
>
>
>
> This taps into the ever-so useful reverse indices vector to pick out

> those elements of data which fall in each "bin" of the index

> histogram. Notice I'm using OMIN to save time in case the minimum
> index is greater than 0. This is much faster than the where() method,
> and can be a factor of 2 or 3 faster than the literal loop approach,

> if indices are repeated at least a few times on average (a few drops

> in each histogram bin). If indices are never repeated, or especially

> if many indices are skipped (a *sparse* set), the literal loop method

> can be much faster than histogram.

The problem that discussed by JD is actually a very practical one, that
can be used in "drizzling" algorithms (e.g.
http://www-int.stsci.edu/~fruchter/dither/drizzle.html) This a

method of combining or warping images that preserves flux -- every pixel
in the input image is equally represented in the output image.

Instead of starting with an input pixel and mapping to an output image
(e.g. as with POLY_2D) , one starts with an output pixel and determines
which input pixels get mapped into it. ~ The flux conservation

property is one very dear to astronomers, and for which there are no
existing IDL tools.

My solution to the problem combined the REVERSE_INDICIES aproach of JD,
with the "accumlate based on the index" approach. For the drizzle

problem, one is probably only going to sum at most 3-4 pixels together,

so it makes sense to loop over the number of distinct histogram values

(i.e. loop only 3-4 times).

My solution is below, but | have to admit that | haven't looked at it for
a while.

--Wayne

P.S. I never finished the drizzle algorithm, because | couldn't figure
out a quick way to compute partial pixel overlaps in IDL...

Page 1 of 2 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1864
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=16343&goto=32358#msg_32358
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=32358
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

pro fdrizzle, vector, index, values
+

; NAME:

; FDRIZZLE

; PURPOSE:

; Add values to an array at specified indicies. The basic usage is

; FDRIZZLE, vector, index, values

: where INDEX and VALUES should have same number of elements. If
there are

; no duplicates in INDEX then FDRIZZLE simply performs the
assignment

. VECTOR[INDEX] = VECTOR[INDEX] + VALUES

; But if INDEX contains repeated elements then the corresponding
VALUES

; will be summed together.

; METHOD:

;. Use the REVERSE_ELEMENTS keyword of histogram to determine the
repeated
;values in INDEX and vector sums these together.

h = histogram(index,reverse = ri,min=0,max=N_elements(vector)-1)

;Add locations with at least one pixel
gmax = max(h) ;Highest number of duplicate indicies

for i=1,gmax do begin
g = where(h GE i, Ng)
if Ng GT 0 then vector[g] = vector[g] + values[ri[ri[g]+i-1]]
endfor

end

Page 2 of 2 ---- Cenerated from conp. |l ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

