Subject: Re: Reducing an array.
Posted by Dick Jackson on Tue, 01 Oct 2002 20:53:26 GMT

View Forum Message <> Reply to Message

"Craig Markwardt" <craigmnet@cow.physics.wisc.edu> wrote in message
news:on65wnysmk.fsf@cow.physics.wisc.edu...

>

> "Joe" <foosej@hotmail.com> writes:

>

>> Hi- I'm somewhat new to IDL and was wondering what the most
effiecient way

>> js to 'OR' all the elements of an array together resulting in a
scalar

>> value. I'm hoping IDL has a built-in way of doing this rather than
using a

>> FOR-LOOP. Similar to how IDL has the TOTAL function which sums all
the

>> elements of an array together. I've used other languagues which
allow you

>> to 'reduce’ arrays to a scalar using an arbitrary function (i.e.
Python's

>> reduce function).

>>

>> What | am doing is taking a lot of integer data which is either O's
orl's

>> and compressing it into the bits of 64-bit unsigned integers. Here
is a bit

>> of sample code:

>>

>> data =[1,0,0,0,1,1,1,0,1,0,1,0,0, ..., O, 1, O, 1] ; bunch of

data, assume

>> # of elements is multiple of 64

>> shifts = reverse(indgen(n_elements(data))) MOD 64

>> compressed_data = ishft(data,shifts)

>> : here is where | want to take the compressed_data array and make it
into a

>> : bunch (n_elements(data)/64, to be exact) of unsigned 64-bit
integers by

>> OR'ing

>> ; every 64 elements of compressed data togeter

>

> In this case you can use TOTAL() directly. First you REFORM() your
> data into a 2-d array, 64xN, then then total the 1st dimension. This
> works because each of your values has only one data bit set, so

> summing and ORing are equivalent.

>

> compressed_data = reform(compressed_data, 64,
n_elements(compressed_data)/64)

Page 1 of 3 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=2718
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=16329&goto=32360#msg_32360
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=32360
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> result = total(compressed_data, 1)

>

> That's it! For JD, | could have combined both statements onto one
> line, but this is more readable.

There's one problem with this, in that Total() returns a Double result

at best (with the /Double keyword), but Joe wanted 64-bit integers. A
64-bit Double value with some bits used as exponent cannot represent as
many distinct values as the 64-bit integer, so we will lose information
here.

Looks to me like this all has to be done in 64-bit integers. I'm sorry |
can't find a *really* elegant solution for you right now, but if your

data array is very large, then a single loop over 64 columns might not
be too inefficient. Here's my best attempt (it does 100000 ints in 2.2
seconds here, fast enough?):

data = RandomU(seed, 640) LT 0.5 ; Byte array of [0|1] values

nints = N_Elements(data)/64
data2D = Reform(data, 64, nints)

Print, 'binary:’
Print, data2D ; Show [0]1] values
result = Replicate(OULL, 1, nints) ; column array

.» If byte O is your high-order bit:

FOR i=0, 63 DO result = result OR ([OLL, 2ULL"(63-i)])[data2Dli, *]]
;; this lookup is faster than

multiplying:
; data2D[i, *] * 2ULL"(63-i)

., If byte O is your low-order bit:
:FOR i=0, 63 DO result = result OR ([OLL, 2ULL7i])[data2D[i, *]]

Print, 'hex:'
Print, result, Format="(2)' ; Show hex values (will
correspond
; to [0]1] values above
Print, 'decimal’’
Print, result ; Show in base 10

and one sample from the output:
binary:

Page 2 of 3 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

11111111000100001010110
111011100010101111001012
101011000101010111

hex:

FF10ADDC5796B157

decimal:

18379381241172898135

Hope this helps!

Cheers,

:-Dick

Dick Jackson / dick@d-jackson.com

D-Jackson Software Consulting / http://www.d-jackson.com
Calgary, Alberta, Canada /+1-403-242-7398 / Fax: 241-7392

Page 3 of 3 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

