Subject: Chunk Array Decimation
Posted by JD Smith on Tue, 01 Oct 2002 19:32:54 GMT

View Forum Message <> Reply to Message

Histogram lovers (and haters alike):

Carsten put this question to me, and I've wasted too much time on it
not to report the results. It's a deceptively simple-seeming problem.

You have a vector of indices, "inds', and a data vector "data’ of the
same length. The ‘inds' vector contains a list of many repeated
indices, e.g.:

[4,2,6,4,1,5,6,6,3,1,7,2]

The job is to generate a result vector "vec' of length max(inds)+1,
such that for each index i:

vec[i]=total(data[where(inds eq i)])

or zero otherwise. That is, gather all data with a given
corresponding index, and total them together into the result vector at
that index. If no indices are repeated, you can of course just use
simple assignment, but that's a much simpler problem. Here's a very
straightforward implementation based on this idea:

mx=max(inds)

vecl=fltarr(mx+1)

for j=0L,mx do begin
wh=where(inds eq j,cnt)
if cnt eq O then continue
vecl[j]=total(data[wh])

endfor

This is slow. Very slow. Verrrrrrrrrry slow. And wasteful. You
search through the index vector using where() many, many times.
Beware of constructs like this. Surely we can do better. OK, how
about a very literal, straight loop approach, just like we'd write in
Cc?

mx=max(inds)

vec2=fltarr(mx+1)

for j=0L,n_elements(data)-1L do $
vec2[inds[j]]=vec2[inds][j]]+data]j]

Accumulate based on the index. Not too bad. Runs much faster than
using where(), but its run-time scales with the number of elements of
data, independent to how many repeated indices there are.

Page 1 of 3 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3377
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=16355&goto=32363#msg_32363
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=32363
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Of course, anyone familiar at all with histogram() would realize
there's a better route when many indices are repeated:

mx=max(inds)

vec3=fltarr(mx+1)

h=histogram(inds,reverse_indices=ri,OMIN=0m)

for j=0L,n_elements(h)-1 do if ri[j+1] gt ri[j] then $
vec3[j+om]=total(data[ri[ri[j]:ri[j+1]-1]])

This taps into the ever-so useful reverse indices vector to pick out
those elements of data which fall in each "bin" of the index
histogram. Notice I'm using OMIN to save time in case the minimum
index is greater than 0. This is much faster than the where() method,
and can be a factor of 2 or 3 faster than the literal loop approach,

if indices are repeated at least a few times on average (a few drops
in each histogram bin). If indices are never repeated, or especially

if many indices are skipped (a *sparse* set), the literal loop method
can be much faster than histogram.

This is all well and good, but Carsten was amazed that I'd offered a
loop in a solution. | wondered whether a loop-free and possibly
faster version existed.

Given the initial set of reverse indices, the problem reduces to one

of: is there a loop-free way to decimate an array using a variable

width "chunk" decimation? E.g.: total the first 5, then the next 3,

then the next O, then the next 7, ..., elements of an array. | was
encouraged by the histogram(total(/CUMULATIVE)) method which solved
Pavel's chunk fill problem of years past, and came up with:

mx=max(inds)

hl=histogram(inds,OMIN=0om,REVERSE_INDICES=ril)

col=ril[n_elements(hl)+1:*]

h2=histogram(total(h1,/cumulative)-1,MIN=0,reverse_indices=r i2)

row=ri2[0:n_elements(h2)-1]-ri2[0]+om ; chunk indices = row number

sparse_array=sprsin(col,row,replicate(1.,n_ind),(mx+1)>n_ind)

if mx ge n_ind then $
vecd=sprsax(sparse_array,[data,replicate(0.,mx+1-n_ind)]) $

else vec4=(sprsax(sparse_array,data))[0:mx]

| use sparse arrays to solve the chunk decimation problem, with the
chunk fill method generating the row numbers of non-zero (unity
actually) entries, and the original reverse indices generating the

column numbers. Unfortunately, RSI's Numerical Recipes-based sparse
array routines demand square arrays (which seems unnecessary to me),
S0 you either have to pad the data or truncate the result, depending

on whether you have more repeated indices than skipped indices. Even

Page 2 of 3 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

so, this method is at least 10 times faster than the former
histogram() method for relatively dense (many repeated index)
mappings! For sparse sets of indices, it still works (thanks to that

if statement at the end), and, amazingly, can still beat the literal
loop method! Such is the penalty for looping at all using IDL
variables, that you're better off going to elaborate lengths creating
sparse array structures and histograms just to get all your looping to
occur in real compiled code.

For a random list of 20,000 indices drawn from 0-2000 (a dense
sampling: each index repeated 10 times, on average), the methods time
to (average, sec):

0.48 ; where()

0.024 ; literal loop

0.011 ; histogram() loop
0.0096 ; sparse array method

And for 20,000 indices drawn from 0-40,000 (a sparse sampling: only 1
out of 2 indices present on average), you get:

5.839 ; where()

0.0257 ; literal loop

0.1047 ; histogram() loop
0.0207 ; sparse array method

Yes, it's ugly, but the numbers speak for themselves. For those of
you not too squeamish to look closely, you'll see that I've used a
histogram of a histogram.

Does anyone begin to feel like the looping penalty in IDL is a bit
much? In any case, it looks like I'm going to add the spr* functions
to my rebin/reform/histogram/## power tool list. They seem to be
quite fast.

JD

Page 3 of 3 ---- Cenerated from conp. |l ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

