Subject: Re: Can DLLs Multi-task?
Posted by Peter Mason on Thu, 03 Oct 2002 22:32:09 GMT

View Forum Message <> Reply to Message

Here's my "string and glue" approach to this sort of problem. | haven't
done image-capturing like this in IDL, but | have done other threaded
programs.

The temperature-monitoring calls are probably okay as they are (fast?) but
the image-capturing call needs some work. From the sound of it, it is a
synchronous call. (Gianluca is basically asking about ways around
synchronous calls.) Some wrapper functions are required to make it run in
a separate thread so that it is asynchronous as far as your IDL program is
concerned. Briefly (assuming you'll be capturing many images): A call to
create a C-side thread, a call to trigger an image capture (which is then
done in the separate thread), possibly a status-polling call, possibly one

or two retrieve-capture calls, and finally a call to end the thread and

clean up once you're done with all your image capturing.

If the image-capturing call can be passed an array (allocated on the IDL
side with a statement like img=BYTARR(X,y)) into which to store the image
then life is relatively simple. All you need is some way for the C routine

to let the calling IDL program know when the image is ready. The simplest
approach is to write a little C routine that just reports whether or not the
image-capturing thread is busy (or something like that). (This is off the
main IDL thread, not the image-capture thread.) You'd then poll this off a
timer event on the IDL side. A more sophisticated approach is to issue an
event from the C image-capture thread to IDL when the image is ready, along
the lines that Rick has described. (I haven't used
IDL_WidgetStublssueEvent() myself, but | have other, less elegant ways of
achieving this sort of thing.)

If the image-capturing insists on its own address for the image then things
could be a bit more complicated. Three possibilities come to mind. If

the image is always a fixed size you could allocate it up front in a "heap”
variable on the IDL side, pass this to the image-capture trigger call, and
just make the image-capture call copy the image across when it's ready.
The next approach is to have an "image size" C routine that you call from
IDL when the image is ready, allocate an array for the image in IDL, then
call an "image retrieve" C routine that simply copies the image to this
array. The slickest approach requires that you build a DLM rather than
just use CALL_EXTERNAL. Here, the "image-retrieve" C routine returns an
IDL array of the captured image. This is very easy to do with RSI's
IDL_ImportArray() C function.

The mechanics of threading on Win32 are relatively straightforward. The
hard parts are knowing what to thread (not a problem here) and retaining a
clear understanding of which thread might be accessing what memory when,
especially on multiprocessor computers (often a problem; nasty little

teeth, too). There are various ways to prevent memory-access conflicts
(e.g., Win32 critical sections, events, mutexes), but simply taking care

Page 1 of 2 ---- Generated from conp. | ang.idl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1501
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=16371&goto=32400#msg_32400
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=32400
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

with your "logic flow" goes a long way towards avoiding them.

Cheers
Peter Mason

"David Fanning" <david@dfanning.com> wrote in message
news:MPG.1805ef78a52763df9899d1@news.frii.com...

VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVYVYVYVYVYVYVYV

Folks,

Here is a question from an IDL user who has no newsgroup
access. He asked me if | would pass this question on
to you:

rkkkkkkkkkkkkhkkkhkkkhkkkhkkkkkkkkkhkkhkkkhkkhkkkkkkkkkkkkkkkkkx
’

| am developing an IDL program which have to call some external C
routines (actually some DLL, because | work on Windows environment).
| am wondering if it is possible in some ways to call more than one DLL
at the same time, l.e. in multitasking, so telling to IDL not to wait

for the DLL return.

For example | need to launch a DLL to continuously monitor some
temperature sensors, but in the meanwhile | have to run another DLL to
read an image from a CCD device. | would need to have the temperature
variables continuously updated by the first DLL so that | can read and
display their values while getting the image from the CCD device.

Is all that possible with IDL?

(I have IDL 5.5)

Thank you very very much for your valuable help,

Gianluca Li Causi
licausi@coma.mporzio.astro.it

vhkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
1

Cheers,

David

David W. Fanning, Ph.D.

Fanning Software Consulting, Inc.

Phone: 970-221-0438, E-mail: david@dfanning.com

Coyote's Guide to IDL Programming: http://www.dfanning.com/
Toll-Free IDL Book Orders: 1-888-461-0155

Page 2 of 2 ---- Generated from conp. |l ang. i dl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php

