Subject: Re: Chunk Array Decimation
Posted by JD Smith on Thu, 10 Oct 2002 00:18:45 GMT

View Forum Message <> Reply to Message

On Mon, 07 Oct 2002 08:51:21 -0700, Jaco van Gorkom wrote:

"JD Smith" <jdsmith@as.arizona.edu> wrote in message
news:pan.2002.10.04.22.07.45.664757.24772@as.arizona.edu...

>

>

>

> JD, we mortals need a tutorial or two in order to even begin to

> understand that Sparse Array trick you pulled there. My humble

> contribution to this thread is to propose an additional and hopefully
> simpler (or, more intuitive) algorithm: let us first sort the data array
> based on the index array, and then use a cumulative total to do the
> chunking.

Well, think of an array multiplication of a very large array on a very
long data vector. Consider only the first row. If almost everything

in the first column is 0., but a few choice 1.'s, that is the same as
selecting those elements of the data vector and totaling them. If you
really had to do all the null operations like:

...+0.*data[12]+0.*data[13]+...

then it would do you no good at all: all those useless
multiply-by-zeroes would waste far too much time to be efficient.
Fortunately, "sparse" arrays were invented for just this problem: you
specify only the non-zero elements, and, when multiplying using
sprsax, they alone are computed. If you adjust the array values, you
could obviously use this to do much more than totaling selected data
elements.

The above algorithm is by far not fast enough because of the very slow
SORTY() operation. If this is replaced by a sorting routine which is more
optimised for the problem at hand, such as, well, I'll let you guess;) ,
then things get much better:
h = HISTOGRAM(inds, REVERSE_INDICES=ri) nh = N_ELEMENTS(h) sortData =
data[inds[ri[nh+1:*]]]
totSortData = [0., TOTAL(sortData, /CUMULATIVE)] vec8 =
totSortData[ri[1:nh]-nh-1] - $
totSortData[ri[0:nh-1]-nh-1]

VVVVYVYVYVYVYV

Aha, a very interesting and compact submission. | think there's one
error there. Should it not be data[ri[nh+1:*]] without the inds? |
translated as:

h = histogram(inds, REVERSE_INDICES=ri)
nh = n_elements(h)

Page 1 of 2 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3377
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=16355&goto=32420#msg_32420
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=32420
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

tdata = [0.,total(data[ri[nh+1:*]],/CUMULATIVE)]
vec9 = tdata[ri[1:nh]-nh-1]-tdata[ri[0:nh-1]-nh-1]

The biggest problem with this method, though, is roundoff error, which
accumulates like mad in a cumulative total of any length. If you do

it in floating point, as you've written, | find unacceptably large

roundoff errors for as few as 500 individual indices. If | convert

the addition to DOUBLE, this mitigates (but does not eliminate) the
roundoff errors, but then it erases the slight time advantage this
method has over the prior champ (the dual histogram). Neither, of
course, come close to the compiled DLM (.

Thanks for the example.

JD

Page 2 of 2 ---- Cenerated from conp. |l ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

