Subject: Re: connected component labeling problem in a graylevel image without background

Posted by Ben Tupper on Tue, 15 Oct 2002 16:20:34 GMT

View Forum Message <> Reply to Message

On Fri, 11 Oct 2002 10:38:48 -0600, David Fanning <david@dfanning.com> wrote:

```
> Julia (julia65201@yahoo.com) writes:
>
>> But I think you kind of misunderstood my problem, maybe due to my not very
>> clear expression. :)
>>
>>>> " The problem is like a grayscale photograph of a jar of
>>> marbles. Each marble is uniformly gray. All the marbles are touching each
>>> other, so there is no
>>> background. Two marbles of the same color may not belong to the same
>>>> region.
>>>> I want to give a unique label to each marble/region."
>>
gina
> P.S. Let's just say I'd bet some good money even the
> HISTOGRAM function can't get us out of this one. :-)
Oh! Wait, wait! Maybe you could use histogram! At least, for the
easiest of the marbles. Consider an image (dimx, dimy) with a
couple of gray circles (gray pixels have index addresses ind).
to cartesian coords.
```

Start with the indices of each gray level from the original histogram (use reverse indices to pull out these indices.) Convert the indices

```
x = ind mod dimx
y = ind/dimx
```

Use histogram (actually, JD's hist\_nd.pro ... I found it using Google) to manufacture X and Y profiles of the marbles.

```
; hist=HIST_ND(V,BINSIZE,MIN=,MAX=,NBINS=,REVERSE_INDICES=)
```

```
v = transpose([[x],[y]])
binsz = [1,1]
hh = hist_nd(v, binsz, min = [0,0], max = [dimx-1, dimy-1])
```

Now, peak at the resulting histograms in each dimension - these will be like profile plots or the original image for each gray level n. (I suppose these could be called shadow plots along each dimension.) !p.multi = [0,1,2] Plot, hh[0,\*], title = 'x profile' Plot, indgen(dimx), hh[1,\*], title = 'y profile'

If the marbles do not overlap (in a dimension), then the center of mass of each marble along each dimension should be easy to find. If they do overlap - well that's a new kind of problem. I suppose that you are not limited to the X and Y axes - that is, you could develop a profile along any arbitrarily rotated axis. That math gets a bit fuzzy for me after this point, but it should be just a geometry game.

I don't IDL in front of me this morning - so this is cut and pasted from my own wobbly memory (and it still a bit early in the morn'.)

Cheers, Ben