
Subject: Re: Displaying 3-D vector fields
Posted by jim.blackwell on Tue, 12 Nov 2002 19:20:07 GMT
View Forum Message <> Reply to Message

"Rick Towler" <rtowler@u.washington.edu> wrote in message
news:<aqh3iq$20ts$1@nntp6.u.washington.edu>...
> "Jim" <jim.blackwell@gsfc.nasa.gov> wrote
>> "Rick Towler" <rtowler@u.washington.edu>
>>> This sounds like a job for object graphics.
>>>
>>> Someone has to have written a vector object which consists of a few
>>> polylines that make up the body and head in a model. Use would be as
> simple
>>> as defining the location and magnitude.
>>>
>>> Once you have that, something as simple as this would work:
>>>
>>> ; Your vector locations - XYZ (empty array used as example)
>>> location=FLTARR(100,3)
>>>
>>> ; Your vector magnitudes - ABC (empty array used as example)
>>> magnitude=FLTARR(100,3)
>>>
>>> ; Create a model to put all of our vectors in
>>> model = OBJ_NEW('IDLgrModel')
>>>
>>> ; Fill it up with vector objects
>>> vectors = OBJARR(100)
>>> for n=0, 99 do $
>>> vectors[n] = OBJ_NEW('vector', LOCATION=location[n,*], $
>>> MAGNITUDE=magnitude[n,*])
>>>
>>> ; Add the array of vectors to our model
>>> model -> Add, vectors
>>>
>>> ; Display the contents of the model using xobjview
>>> xobjview, model, /BLOCK
>>>
>>> ; Destroy the objects
>>> OBJ_DESTROY, model
>>>
>>>
>>> If you want to animate the vectors you'll have to do a little more work
> but
>>> it would be simple.
>>>
>>>
>>> The trick is finding the "vector" object. Someone on this list has to

Page 1 of 7 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4478
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=16510&goto=32864#msg_32864
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=32864
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> have
>>> written something similar. I was giving this a day hoping someone with
> such
>>> an object would step up... Try searching the usual code archives. I
>>> thought Mark Hadfield had something like this but his webpage isn't up
>>> anymore.
>>>
>>> If you want to try and write the vector object yourself left me know and
> I
>>> can help get you started.
>>>
>>> -Rick
>>
>
>> Thanks for the advice. As far as a vector object, I presume one could
>> take the program offered in another reply to this posting and make it
>> an object ? Not being familiar with Object Graphics other than for
>> some examples I've tried to figure out, I need some help here.
>
> Well let me introduce you to the wonderful world of Object graphics. :)
> Actually, let Ronn Kling do that with his book "Power Graphics with IDL".
> You can get it from his website (www.kilvarock.com). You'll need it if you
> want to go beyond the basics I outlined above.
>
> I saw your other post too. I haven't looked at show_stream.pro so I can't
> help you there. What I can do is provide you with a vector object. I just
> whipped this up because I was trying to avoid other work so test it a bit
> first to verify it does what it should. There are no guarantees...
>
> Let me know how you make out.
>
> -Rick
>
>
>
> ;+
> ; NAME:
> ; VECTOR__DEFINE
> ;
> ; PURPOSE:
> ;
> ; This is an example of a 3D vector class for plotting
> ; vector fields. This object is a subclass of IDLgrModel
> ; which contains a polyline object representing a vector
> ; provided a given location and magnitude.
> ;
> ; AUTHOR:
> ; Rick Towler

Page 2 of 7 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> ; School of Aquatic and Fishery Sciences
> ; University of Washington
> ; Box 355020
> ; Seattle, WA 98195-5020
> ; rtowler@u.washington.edu
> ; www.acoustics.washington.edu
> ;
> ;
> ; CATEGORY: Object Graphics
> ;
> ;
> ; CALLING SEQUENCE:
> ;
> ; vectorObject = OBJ_NEW('vector')
> ;
> ;
> ; KEYWORDS:
> ;
> ; This object inherits keywords from it's superclass, IDLgrModel, and
> ; passes keywords to IDLgrPolyline.
> ;
> ; location: A 3 element vector defining the X, Y and Z
> ; coordinates of the vector's location.
> ;
> ; magnitude: A 3 element vector defining the X, Y and Z
> ; magnitude of the vector.
> ;
> ;
> ; METHODS:
> ;
> ; GetProperty:
> ;
> ; SetProperty:
> ;
> ;
> ; DEPENDENCIES: None.
> ;
> ; EXAMPLE:
> ;
> ; vecObj = OBJ_NEW('vector', LOCATION=[0,0,0], MAGNITUDE=[3,2,1], $
> ; COLOR=[255,0,0], THICK=2.0)
> ;
> ; xobjview, vecObj
> ;
> ;
> ; MODIFICATION HISTORY:
> ; Written by: Rick Towler, 8 November 2002.
> ;

Page 3 of 7 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> ;-
>
>
> function Vector::Init, location=location, $
> magnitude=magnitude, $
> _ref_extra=extra
>
>
> ; Check the keywords.
> self.location = (N_ELEMENTS(location) eq 0) ? [0,0,0] : location
> self.magnitude = (N_ELEMENTS(magnitude) eq 0) ? [0,0,-1] : magnitude
>
> ; Initialize the superclass.
> ok = self->IDLgrModel::init(/SELECT_TARGET, _EXTRA=extra)
> if (not ok) then return, 0
>
> ; Define the unit vector vertices.
> vertices = [[-0.1,0.0,-0.85], $
> [0.0,0.0,-1.0], $
> [0.1,0.0,-0.85], $
> [0,0,0]]
>
> ; Connect the dots to form our vector
> polylines = [3,0,1,2,2,1,3]
>
> ; Create the vector body
> self.oBody = OBJ_NEW('IDLgrPolyline', vertices, POLYLINES=polylines, $
> _EXTRA=extra)
>
> ; Add the polyline to self.
> self -> Add, self.oBody
>
> ; "Update" the vector to orient/translate/scale it correctly.
> self -> Update
>
> RETURN, 1
>
> end
>
>
> pro Vector::Update
>
> compile_opt idl2
>
> ; Reset our transform.
> self -> Reset
>
> ; Rotate the vector.

Page 4 of 7 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> lvn = TOTAL(self.magnitude^2)
> if (lvn eq 0.) then begin
> ; Hide the vector if magnitude=0
> self -> SetProperty, /HIDE
> RETURN
> endif
> self -> SetProperty, HIDE=0
> lMag = SQRT(lvn)
> lvector = self.magnitude / lMag
>
> yaw = 180. + ATAN(lvector[0],lvector[2]) * !RADEG
> pitch = ATAN(lvector[1], SQRT(lvector[2]^2 + lvector[0]^2)) * !RADEG
>
> self -> Rotate, [1,0,0], pitch
> self -> Rotate, [0,1,0], yaw
>
> ; Scale according to magnitude
> self -> Scale, lMag, lMag, lMag
>
> ; Move the vector into place.
> self -> Translate, self.location[0], self.location[1], $
> self.location[2]
>
> RETURN
>
> end
>
>
> pro Vector::SetProperty, location=location, $
> magnitude=magnitude, $
> _extra=extra
>
> compile_opt idl2
>
> update = 0B
>
> if (N_ELEMENTS(location) eq 3) then begin
> self.location = location
> update = 1B
> endif
>
> if (N_ELEMENTS(magnitude) eq 3) then begin
> self.magnitude = magnitude
> update = 1B
> endif
>
> if (update) then self -> Update
>

Page 5 of 7 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> self->IDLgrModel::SetProperty, _EXTRA=extra
> self.oBody->SetProperty, _EXTRA=extra
>
> end
>
>
> pro Vector::GetProperty, location=location, $
> magnitude=magnitude, $
> _ref_extra=extra
>
> compile_opt idl2
>
> location = self.location
> magnitude = self.magnitude
>
> self->IDLgrModel::GetProperty, _EXTRA=extra
> self.oBody->GetProperty, _EXTRA=extra
>
> end
>
>
> pro Vector::Cleanup
>
> compile_opt idl2
>
> OBJ_DESTROY, self.oBody
>
> ; Call our parents cleanup method
> self->IDLgrModel::Cleanup
>
> end
>
>
> pro Vector__Define
>
> struct={Vector, $
> inherits IDLgrModel, $
> oBody:OBJ_NEW(), $
>
> location:FLTARR(3), $
> magnitude:FLTARR(3) $
> }
>
> end

Hey this is almost what I need. How would one draw more than 1 vector
at a time in the same window ? 3-D axes ? I'll check into the Power
Graphics book, thanks.

Page 6 of 7 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Jim Blackwell

Page 7 of 7 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

