Subject: Re: passing parameters from base to base
Posted by Pavel A. Romashkin on Tue, 26 Nov 2002 18:47:37 GMT

View Forum Message <> Reply to Message

This sounds sensible, although I didn't see one piece of information (or
did I miss it?) - how do ObjMsg objects know about each other? There has
to be a place they go to when they want to "sign up". Is the awareness
established at initialization, or in a common block? How do they become
aware of each other?

Cheers,

Pavel

JD Smith wrote:

This is similar to a system I've developed over the years (and which
hopefully will be available in the form of a suite of viewer tools

"real soon now"). Instead of sending events, | abstract widget events
and other forms of intercommunications among objects as "messages”,
and provide a framework for sending messages, signing up to receive
those messages, etc. | call it all "Object Messaging"”, and "ObjMsg"

is the parent class. Any ObjMsg object can send and receive messages
from any other ObjMsg object. Widget programs can talk to non-widget
programs, and all communication is treated the same way.

Want to get messages from somebody about new pudding flavors?
somebody->MsgSignup,self,/PUDDING_FLAVORS

Tired of hearing about pudding flavors?
somebody->MsgSignup,self,/NONE

etc. The flow of messages is not static; indeed it sometimes changes
quite often during run time. At its essence, there is, of course, no
fundamental difference between this mechanism and just carefully
keeping track of which methods to call on which objects when, but the
beauty is, it relieves the program from having to remember all this,
and tends to promote smaller, more modular code.

For instance, my "tvDraw" object contains a draw widget, and sends all
kinds of message, including simple motion events. At any given time,
anywhere from 0 to ~10 different objects are interested in motion
events. But tvDraw simply doesn't care about all that:

self->MsgSend,/TVDRAW_MOTION

is sufficient to get all messages sent to all the relevant parties
with no further effort. What this means is that, if later on you

VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVYVYVYVYVYV

Page 1 of 2 ---- Generated from conp. | ang.idl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3702
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=16622&goto=33042#msg_33042
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=33042
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

write another ObjMsg object which would like to hear about motion
events, no new code is required.

The up-the-widget-heirarchy event passing paradigm is simple and
useful, but for complex programs in encourages you to put everything
in one place. Object Messages essentially breaks free from this
paradigm: events and messages can be sent anywhere, at anytime.

Once freed from the shackles of object (and especially widget)
intercommunication, you can better resist the urge to include
everything but the kitchen sink in single burgeoning piles of code,
and write small, focused objects, designed to solve one task well.

Of course, it's all smoke and mirrors until | show some code...

VVVVVVVVVVVYVYVYVYVYV

JD

Page 2 of 2 ---- Cenerated from conp. |l ang.idl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php

