
Subject: Re: Dynamically creating C++ objects in DLM
Posted by Nigel Wade on Thu, 02 Jan 2003 12:04:14 GMT
View Forum Message <> Reply to Message

Rick Towler wrote:

> It has been a slow day here so maybe this can stir up some passion :)
>
> I have a few .dlm's where I declare a global C++ object and use that
> object
> throughout the dlm. The dlm functions and procedures allow me to
> initialize
> the object, do stuff with it, and destroy it. Easy enough.
>
> The one limitation is that I only have one instance of the object
> available. If I run a second instance of a program that uses that .dlm the
> two IDL programs will overwrite the C++ object causing general mayhem
> (like using a common block in IDL).
>
> A solution to this problem would be dynamically creating the C++ object
> upon
> initialization and returning a pointer to the object back to IDL. When
> calling the dlm routines I could pass the pointer back to my dlm to gain
> access to my object of interest.

A reasonable solution; I do this in several of my DLMs.

>
>
>
> My questions are:
>
> How do I dynamically create a C++ object (I think I use "new" but am a
> little unclear on the correct use)?
>
> myObject *test = new myObject; //?????

Not speaking C++ particularly well, I'd hazzard a guess that that's correct,
it looks ok. My DLM's are all in C.

>
> How do I pass pointers back and forth between my DLM and IDL? Is it as
> simple as passing a long?
>
> return IDL_GetTmpLong(test); //Is it this easy?

I wouldn't recommend this method. There's no guarentee that a long is the
same size as a pointer, or that it will remain so. What I do is to store

Page 1 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=2519
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=16773&goto=33452#msg_33452
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=33452
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

the pointer in a byte array which is created the same size as the pointer.

This is an example from one of my DLMs which needs to pass the value of the
pointer PI_handle back to IDL in the 4th positional parameter. Using
IDL_ImportArray allows you to define a callback routine which can free your
allocated memory if the variable stored in IDL is erased, in this case it's
called idl_PI_strategy_cb. Also note that IDL_ImportArray creates a
temporary variable, so IDL_VarCopy doesn't allocate new memory; it uses
the memory already allocated by a temp variable :

 UCHAR *store;
 IDL_VPTR new_array;
 IDL_LONG dims[1];
 PI_Strategy *PI_handle = NULL;

 dims[0] = sizeof(PI_handle);
 store = (UCHAR *)malloc(dims[0]);
 memcpy(store, &PI_handle, dims[0]);
 new_array = IDL_ImportArray(1, dims, IDL_TYP_BYTE,
 store, idl_PI_strategy_cb, NULL);
 IDL_VarCopy(new_array, parameters[3]);

I don't know how much of this can be executed directly in C++.

>
>
> If I do pass IDL a long representing my pointer, how do I use it when I
> pass
> it back to my DLM? The compiler sees it as a long, not a pointer to an
> object.
>
> pointer = IDL_LongScalar(argv[0]); //receive the pointer address
> from
> IDL
> *pointer.Test(); //not the way to do it
>

Again, not sure about C++, but in C I use memcpy to copy the data array back
into a pointer:

 PI_Strategy *PI_handle;

 IDL_ENSURE_ARRAY(argv[0]);
 IDL_EXCLUDE_EXPR(argv[0]);
 if (argv[0]->type != IDL_TYP_BYTE ||
 argv[0]->value.arr->n_dim != 1 ||
 argv[0]->value.arr->dim[0] != sizeof(PI_Strategy *) ||
 argv[0]->value.arr->free_cb != idl_PI_strategy_cb)

Page 2 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 IDL_Message(IDL_M_NAMED_GENERIC, IDL_MSG_LONGJMP,
 "arg 1 is not a valid PI handle.");
 /*
 * copy the embedded strategy pointer from the IDL byte array into
 * the C pointer.
 */
 memcpy(&PI_handle, argv[0]->value.arr->data, sizeof(PI_Strategy *));

>
> Thanks for any thoughts.
>

Sorry I don't know C++ well enough to answer the question directly.
Hopefully some of the C code might help though.

--
Nigel Wade, System Administrator, Space Plasma Physics Group,
 University of Leicester, Leicester, LE1 7RH, UK
E-mail : nmw@ion.le.ac.uk
Phone : +44 (0)116 2523568, Fax : +44 (0)116 2523555

Page 3 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

