
Subject: Re: intersection/union of two polygons
Posted by JD Smith on Thu, 23 Jan 2003 17:49:45 GMT
View Forum Message <> Reply to Message

On Thu, 23 Jan 2003 07:51:04 -0700, Roberto Monaco wrote:

>  Hi,
>  
>  Does anyone know where I can find intersection and union between two
>  polygons in IDL?
>  
>  Ideally a function that returns the polygon resulting of the
>  intersection (union) of the input polygons. If not, the area
>  (intersection / union) would be helpful.
>  
 
I had to solve a simple subset of this problem: intersect arbitrary
polygons against a square grid of pixels.  Ideally, it should work for
clipping two arbitrary polygons.  There are libraries for doing this
quite generally, but for normal polygons without holes or waists you
can easily put something together using the very simple
Sutherland-Hodgeman algorithm (search for that, it's about day 3 of
intro computer graphics courses).

Unfortunately, the algorithm doesn't vectorize in any way I've yet
found, and is pretty slow in straight IDL loops.  Since I literally
had hundreds of thousands of polygons to clip, I ended up writing it
in C and linking to it externally.  I can make the IDL version
available if you're interested.  It has the additional constraint of
working only for convex polygons.  This can easily be fixed by
augmenting the intermediate storage array size.

A side note on writing external code: I had a conundrum -- the clipper
was too slow, but I didn't want to deal with the hassle of compiling C
code on all the different architectures on which my code would be run
once distributed.  Neither did I want to provide C-compiling support
to users.  Luckily, RSI has provided an excellent if little-known
capability to solve just this problem: MAKE_DLL, which I used to
advantage with the help of one of RSI's engineers.  It's essentially
an internal, system-specific Makefile, shielding you from all the
hateful compile and link incantations required to actually build a
shared library for use with CALL_EXTERNAL.

But what if MAKE_DLL fails, due, for instance, to a Windows user not
having the proper compiler (not shipped by default)?  Well, my
solution was to keep the old, slow, IDL-loop based method in place,
and only use the compiled version if compilation succeeds, which I
test only once per IDL session.

Page 1 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3377
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=16884&goto=33734#msg_33734
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=33734
http://idlcoyote.com/comp.lang.idl-pvwave/index.php


Here's the recipe:

At the beginning of the code which is deciding whether to use the
compiled or internal method:

common mycode_external,polyclip_compiled,polyclip_path
if n_elements(polyclip_compiled) eq 0 then begin 
 catch,g err
 if err ne 0 then begin   ; any failure in compiling, just use the IDL vers
    polyclip_compiled=0
 endif else begin 
    resolve_routine,'polyclip'
    path=(routine_info('polyclip',/SOURCE)).PATH
    path=strmid(path,0,strpos(path,path_sep(),/REVERSE_SEARCH))
    make_dll,'polyclip','polyclip',INPUT_DIRECTORY=path, $
             DLL_PATH=polyclip_path ;,/REUSE_EXISTING
    polyclip_compiled=1
 endelse 
 catch,/cancel
endif

There I'm being cheeky and locating my polyclip.c file by knowing it's
in the directory with my polyclip.pro file.  Also, I actually have
keywords to recompile or to switch to the internal non-compiled code
unconditionally, for testing purposes, but omitted these for clariy.

And actually deciding which method to use looks like:

if polyclip_compiled eq 0 then begin ; IDL version
  blah
  polyclip,i,j,px_out,py_out
  blah
endif else begin      ; Compiled code, use call_external and the shared lib
  blah
  tmp=call_external(polyclip_path,'polyclip',$
                    VALUE= $
                    [0b,0b,1b,   0b,0b,1b,    0b,    0b,    0b,   0b], $
                    vi,vj,npix,  px,py,npol,  px_out,py_out,areas,ri_out)
  blah
endelse

This works very well.  If things are setup for MAKE_DLL to succeed,
the code will run faster.  If not, no error will occur, and the code
will still run, producing the same results, albeit more slowly.
Someone once commented that it would be nice for IDL to permit
assembly-style, in-place callouts to C; this is as close to that as is
possible.  All the benefits of external code with none of the pain.

Page 2 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php


JD

Page 3 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

