Subject: Re: how to handle 3-D data
Posted by thompson on Thu, 26 Jan 1995 19:13:10 GMT

View Forum Message <> Reply to Message

mombasa@kronos.arc.nasa.gov (Tarang Kumar Patel) writes:
> thompson@orpheus.nascom.nasa.gov (William Thompson) writes:
>> daffer@primenet.com writes:

>>> |n <3fa920%4ve@mojo.eng.umd.edu>, surinder@eng.umd.edu (Surinder P. Singh) writes:
>>>>

>>>>

>>>>

>>>> | get data out put from

>>>> FORTRAN 77, a function

>>>> F(i,j,K) .

>>>>

>>>> What is the best way to write this

>>>> data and read by idl ?

>>>> Can i increse speed of reading

>>>> and writing by unformatted data ?

>>>>

>>> Definately use unformated data. To write a four byte float in full precision as
>>> formatted data (i.e. text) takes 8 or [9 bytes] (7 digits + decimal

>>> [+ minus sign]), four of five bytes more than in binary representation.

>>> Just remember that IDL and Fortran think of arrays different ways. | forget
>>> exactly the way you say this, but I think the expression is that Fortran is row
>>> major and IDL is column major. If you don't impose some output

>>> format by means of a do loop around the output statment or an implied

>>> do loop in the format statement, then if the array that is written out has

>>> dimensions 3 X 4 X 5 than it should be read inas 5 X 4 X 3.

>> That's wrong, if one is speaking about Interactive Data Language from Research
>> Systems Incorporated. Perhaps the author was thinking about Interface

>> Definition Language--1 don't know anything about that. However, both RSI's IDL
>> and FORTRAN address arrays in the same way. | don't remember the terminology
>> either, but in both IDL and Fortran the first dimension in the array is the one

>> that changes first--i.e. the element (2,1) follows immediately after the

>> element (1,1). Both behave in exactly the opposite way from C.

> Yes, the storage is same for IDL and FORTRAN i.e 1st DIMENSION varying
fastest. However IDL arrays differ in that the 1st dimension is the COLUMN
> index and not the ROW index.

\

> for example

Page 1 of 3 ---- Generated from conp. | ang.idl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=35
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=2374&goto=3407#msg_3407
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=3407
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> a=indgen(2,3) ; 2 columns, 3 rows

> print,a

> 0 1
> 2 3
> 4 5
> |

> where a(0,0) =0, a(0,1) = 2, a(0,2) =4 and so on

FORTRAN and C adhere to MATRIX notation. Thus in FORTRAN this would appear
asa(l,1)=0a(2,1) =2, and in C a[0][0]=1, a[1][0] = 2

The fact that FORTRAN stores an array in ,e,ory as row major has nothing

to do with the way a user address's the array, thats really code efficiency

issue. Though as far as storage is concerned IDL and FORTRAN are the same i.e
1st DIMENSION varying the fastest, however the 1st dimension has different
meanings

V VVVVYVYV

So storage wise the elements of the array would appear in a consecutive order
as follows

Thus for the above example 0,1,2,3,4,5 are stored in that sequence
In IDL notation a(0,0), a(1,0), a(0,1) note the 1st dimension is the COLUMN

VVVVYV

In FORTRAN notation a(1,1), a(2,1), a(3,1) " st " " " ROW
and thus this would be 0,2,4,1,3,5

In C notation a[0][0],a[0][1],a[1][0],a[1][1] " 1st " " " ROW
and thus this would be in memory as 0,1,2,3,4,5

V VVVYV

> S0 you see this really confuses matters. The situation is made worse by RSI's
> manual claiming that IDL and FORTRAN ordering are a like i.e row major.
> Well IDL is not row major in the classic notation of MATRICES.

You must be using a different version of Fortran than I'm using. | put
together the following short test program in both Fortran and IDL

Fortran:
program test
dimension a(5,3)
open(unit=1,file="test.dat',form='formatted’,readonly,status ='old")
read (1,*) a
read (*,*) i,]
write (*,*) a(i,))
end

IDL:
pro test
a = fltarr(5,3)

Page 2 of 3 ---- Generated from conp. | ang.idl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php

openr,1,'test.dat’
readf,1,a

read,i,j
print,a(i-1,j-1)
end

test.dat

1 20 300 4000 50000
11 12 13 14 15

111 222 333 444 555

Running this on a VAX/VMS computer, | get the same results from both the VMS
and Unix versions no matter what indices I type in. Both IDL and any version

of Fortran I've ever run into work exactly the same way. They're both the
opposite of the way C treats arrays.

Bill Thompson

Page 3 of 3 ---- Cenerated from conp. |l ang.idl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php

