Subject: Re: counting bits

Posted by thompson on Wed, 26 Feb 2003 20:15:28 GMT

View Forum Message <> Reply to Message

JD Smith <jdsmith@as.arizona.edu> writes:

> IDL> r=ulong(randomu(sd,100)\*2.^31) & for i=0,31 do print,FORMAT='(I2,": ",I2,A)',i,total((r AND ulong(2.D^i)) ne 0UL),'% set'

- > 0: 0% set
- > 1: 0% set
- > 2: 1% set
- > 3: 1% set
- > 4: 9% set
- > 5: 17% set
- > 6: 27% set
- > 7: 59% set
- > 8: 44% set
- > 9: 50% set
- > 10: 46% set
- > 11: 57% set
- > 12: 50% set
- > 13: 55% set
- > 14: 51% set
- > 15: 48% set
- > 16: 56% set
- > 17: 51% set
- > 18: 52% set
- > 19: 43% set
- > 20: 46% set
- > 21: 44% set
- > 22: 35% set
- > 23: 52% set
- > 24: 47% set
- > 25: 51% set > 26: 44% set
- > 27: 51% set
- > 28: 46% set
- > 29: 53% set
- > 30: 45% set

> 31: 0% set

That's pretty simple to explain. Floating point numbers are stored with a mantissa and an exponent, both stored within the same 4 byte word. A few of the bits are devoted to the exponent, and the rest are devoted to the mantissa. When you call

randomu(sd,100)

you generate a bunch of numbers which mostly have the same exponent bits, because all the numbers are of the same order of magnitude, while the mantissa bits are generally 50% on or 50% off. When you then multiply this by 2.^31 and convert it into a long integer, you're primarily sampling the mantissa bits. In fact, the only reason why the last few bits are sometimes set at all is that some of the random numbers are close to zero, and thus end up with different exponents.

You can see this by looking directly at the bits of the original floating point numbers.

IDL> r=ulong(randomn(sd,100),0,100) & for i=0,31 do print,FORMAT='(I2,": ",I2,A)',i,total((r AND ulong(2.D $^{\prime}$ i)) ne 0UL),'% set'

0: 58% set

1: 49% set

2: 48% set

3: 48% set

4: 49% set

5: 49% set

6: 47% set

7: 42% set

8: 53% set

9: 51% set

10: 55% set

11: 46% set

12: 44% set

13: 48% set

14: 50% set

15: 59% set

16: 40% set

17: 52% set

18: 53% set

19: 57% set

20: 48% set

21: 41% set

22: 43% set

23: 43% set

24: 75% set

25: 86% set

26: 96% set

27: 96% set

28: 96% set

29: 96% set

30: 4% set

31: 53% set

See how the mantissa is stored in the lower bits, and there's very little variation in the uppermost bits where the mantissa is stored?

## Bill Thompson

Page 3 of 3 ---- Generated from comp.lang.idl-pvwave archive