
Subject: Re: counting bits
Posted by JD Smith on Wed, 26 Feb 2003 18:29:52 GMT
View Forum Message <> Reply to Message

On Tue, 25 Feb 2003 16:17:05 -0700, Big Bird wrote:

> JD Smith <jdsmith@as.arizona.edu> wrote in message
> news:<pan.2003.02.20.15.43.26.137656.2731@as.arizona.edu>...
>
>> One thing I did notice when creating "random" arrays:
>>
>> IDL> print,FORMAT='(F5.2,A)',total(ulong(randomu(sd,100)*2.^31) mod 2
>> eq 1),$
>> '% odd'
>>
>> Try this a few times. That lowest bit just does not get set. Some
>> floating-point representation expert must have an explanation.
>
>
> Dunno that this needs an expert: give a /double to the call to rendomu
> and it works as expected -- otherwise randomu will return a float array,
> floats have 4 byte representation and thus the graininess at which
> floats can be represented cannot possibly be better than 1 bit in 32
> (and in reality it's a good bit less).
>
> In other words: you're multiplying floats 0<f<1 with 2.^31 which means
> for them to be distinguishable in the last bit the original floats would
> have had to have a spacing of 1/2^30 :
>
> m = machar()
> print,m.eps
> 1.19209e-07
> print,1/(2^31.)
> 4.65661e-10
>
> So you have numbers that are at most about 10^7 apart from each other
> (the machine precision) and you multiply them with almost 10^10 and thus
> will not get numbers that are 'one' apart from each other.
>
> You want weird? Check for all the bits OTHER than the last one:
>
> print,FORMAT='(F5.2,A)',total(ulong(randomu(sd,100)*2.^31) and $
> 2ul eq 2ul),'% set'
>
> print,FORMAT='(F5.2,A)',total(ulong(randomu(sd,100)*2.^31) and $
> 4ul eq 4ul),'% set'
>
> print,FORMAT='(F5.2,A)',total(ulong(randomu(sd,100)*2.^31) and $

Page 1 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3377
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=17017&goto=34128#msg_34128
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=34128
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> 8ul eq 8ul),'% set'
>
> etc ...

I think you meant to include the "and" inside the total() call. And
yes, it is bizarre:

IDL> r=ulong(randomu(sd,100)*2.^31) & for i=0,31 do print,FORMAT='(I2,": ",I2,A)',i,total((r AND
ulong(2.D^i)) ne 0UL),'% set'
 0: 0% set
 1: 0% set
 2: 1% set
 3: 1% set
 4: 9% set
 5: 17% set
 6: 27% set
 7: 59% set
 8: 44% set
 9: 50% set
10: 46% set
11: 57% set
12: 50% set
13: 55% set
14: 51% set
15: 48% set
16: 56% set
17: 51% set
18: 52% set
19: 43% set
20: 46% set
21: 44% set
22: 35% set
23: 52% set
24: 47% set
25: 51% set
26: 44% set
27: 51% set
28: 46% set
29: 53% set
30: 45% set
31: 0% set

I guess I was looking not for an explanation of why the bits can't be
evenly populated (which is obvious), but why *in particular* the
lowest bits seem consistently poorly populated. I performed a very long
run also:

IDL> r=ulong(randomu(sd,10000000)*2.^31) & for i=0,31 do print,FORMAT='(I2,":

Page 2 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

",F5.2,A)',i,total((r AND ulong(2.D^i)) ne 0UL)/100000.,'% set'
 0: 0.39% set
 1: 0.78% set
 2: 1.56% set
 3: 3.13% set
 4: 6.25% set
 5: 12.50% set
 6: 25.00% set
 7: 50.02% set
 8: 50.01% set
 9: 49.98% set
10: 50.02% set
11: 50.02% set
12: 50.00% set
13: 50.01% set
14: 50.01% set
15: 50.00% set
16: 50.00% set
17: 50.04% set
18: 50.00% set
19: 50.00% set
20: 49.97% set
21: 50.02% set
22: 50.03% set
23: 50.02% set
24: 50.01% set
25: 50.03% set
26: 50.01% set
27: 50.00% set
28: 49.99% set
29: 49.98% set
30: 50.00% set
31: 0.00% set

So it's not a low-number statistics problem. You'll notice a *very*
curious pattern emerges.

JD

Page 3 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

