Subject: Re: counting bits
Posted by JD Smith on Wed, 26 Feb 2003 18:29:52 GMT

View Forum Message <> Reply to Message

On Tue, 25 Feb 2003 16:17:05 -0700, Big Bird wrote:

>
>
>
>>
>>
>>
>>

VVVVVVVVVVVVVVVVVVVVVVVVYVYVYVYVYVYVYV

JD Smith <jdsmith@as.arizona.edu> wrote in message
news:<pan.2003.02.20.15.43.26.137656.2731@as.arizona.edu>...

One thing | did notice when creating "random" arrays:

IDL> print, FORMAT='(F5.2,A)',total(ulong(randomu(sd,100)*2.#31) mod 2
eq1)$
‘% odd'

Try this a few times. That lowest bit just does not get set. Some
floating-point representation expert must have an explanation.

Dunno that this needs an expert: give a /double to the call to rendomu
and it works as expected -- otherwise randomu will return a float array,
floats have 4 byte representation and thus the graininess at which
floats can be represented cannot possibly be better than 1 bit in 32
(and in reality it's a good bit less).

In other words: you're multiplying floats 0<f<1 with 2.~31 which means
for them to be distinguishable in the last bit the original floats would
have had to have a spacing of 1/2*30 :

m = machar()
print,m.eps
1.19209e-07
print,1/(2"31.)
4.65661e-10

So you have numbers that are at most about 10"7 apart from each other
(the machine precision) and you multiply them with almost 10710 and thus
will not get numbers that are '‘one' apart from each other.

You want weird? Check for all the bits OTHER than the last one:

print, FORMAT='(F5.2,A)" total(ulong(randomu(sd,100)*2.A31) and $
2ul eq 2ul),'% set'

print, FORMAT='(F5.2,A)" total(ulong(randomu(sd,100)*2.~31) and $
4ul eq 4ul),'% set'

print, FORMAT='(F5.2,A)" total(ulong(randomu(sd,100)*2.#31) and $

Pag

el of 3 ---- CGenerated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3377
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=17017&goto=34128#msg_34128
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=34128
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> 8ul eq 8ul),'% set'
>

> etc...

| think you meant to include the "and" inside the total() call. And
yes, it is bizarre:

IDL> r=ulong(randomu(sd,100)*2.~31) & for i=0,31 do print, FORMAT='(12,": ",12,A)",i,total((r AND
ulong(2.D%i)) ne OUL),'% set'

0: 0% set

1. 0% set
2. 1% set
3. 1% set
4: 9% set
5:17% set
6: 27% set
7:59% set
8: 44% set
9: 50% set
10: 46% set
11: 57% set
12: 50% set
13: 55% set
14: 51% set
15: 48% set
16: 56% set
17: 51% set
18: 52% set
19: 43% set
20: 46% set
21: 44% set
22: 35% set
23:. 52% set
24: 47% set
25: 51% set
26: 44% set
27: 51% set
28: 46% set
29: 53% set
30: 45% set
31: 0% set

| guess | was looking not for an explanation of why the bits can't be
evenly populated (which is obvious), but why *in particular* the

lowest bits seem consistently poorly populated. | performed a very long
run also:

IDL> r=ulong(randomu(sd,10000000)*2.#31) & for i=0,31 do print,FORMAT='(12,"

Page 2 of 3 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

" F5.2,A)i,total((r AND ulong(2.D"i)) ne 0UL)/100000.,'% set'
: 0.39% set
0.78% set
1.56% set
3.13% set
6.25% set

1 12.50% set
: 25.00% set
: 50.02% set
: 50.01% set
: 49.98% set
10: 50.02% set
11: 50.02% set
12: 50.00% set
13: 50.01% set
14: 50.01% set
15: 50.00% set
16: 50.00% set
17:50.04% set
18: 50.00% set
19: 50.00% set
20: 49.97% set
21: 50.02% set
22:50.03% set
23:50.02% set
24:50.01% set
25:50.03% set
26: 50.01% set
27:50.00% set
28: 49.99% set
29: 49.98% set
30: 50.00% set
31. 0.00% set

©CONOUNAWNEO

So it's not a low-number statistics problem. You'll notice a *very*
curious pattern emerges.

JD

Page 3 of 3 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

