Subject: Re: IDL objected oriented question
Posted by JD Smith on Sun, 13 Apr 2003 04:35:20 GMT

View Forum Message <> Reply to Message

On Wed, 09 Apr 2003 09:33:37 -0700, Pavel Romashkin wrote:

There is no question that IDL object implementation is crippled. Just as
there is no question that even as it is, it is very useful. | have been
following the threads addressing heap cleanup and this one, and - what
can we do? - yes, we have to take care of many things that other
languages do on their own.

With regard to Catalyst, | suppose, you just right click on
dfanning.com/catalyst.zip and choose "download to disk", and enjoy :-)
Jokes aside, | thought of doing a similar thing as Catalyst, but for a
different reason - using small widget systems that don't even have to be
visible to help objects do their business. So to say, fill the gaps in
object implementation with widget events, just like in, for instance,
VBA, where objects can simply listen to each other (in addition to true
encapsulation and automatic cleanup :-) Then of course, it all comes
back to a global event sink, object self-awareness and
transmogrification. Which ends up to be a Common variable or elusive
orphaned pointer :-) The reason | haven't done it is, | never really
needed it. Shouldn't be very difficult and a fun, challenging project.

Any takers?

VVVVVVVVYVVVVVVVYVYVYVYV

| certainly haven't held my tongue when it comes to complaining about
IDL's object system, but I think you may be overlooking some relevant
points. There is not single, definitive object system or object
programming paradigm. People spend countless years on newsgroups less
reputable than this one arguing mundane and esoteric points such as
the utility vs. harmfulness of, e.g., operator overloading. When you
look at the major OOP languages out there, IDL, quite surprisingly,
seems most comparable to SmallTalk. This language was developed in
the late 70's, and was the first to use object orientation.

Interestingly, the main architect, Alan Kay, was quoted, "l invented

the term "Object-Oriented’, and | can tell you | did not have C++ in
mind."

IDL, like SmallTalk, practices total information hiding: instance
variables (the "fields" of the class-struct) are only accessible

within the class. Also like SmallTalk, methods are always fully

public. The only places it seems to deviate is in permitting multiple
inheritance (SmallTalk only permits single inheritance), and of course
the fact the SmallTalk is "pure” OO -- everything is an object,
whereas objects were grafted onto IDL somewhat inelegantly after 20
years without them. The fact that these policies seem limiting is

more a statement of current OO languages of choice (C++,Java, etc.),

Page 1 of 2 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3377
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=17223&goto=34739#msg_34739
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=34739
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

which provide more facilities for access control and encapsulation,
than of any consensus of best-practices. What's interesting is that
most authorities, even of languages which allow it, consistently
discredit the use of explicit instance variables outside of the class
itself. That's not to say | enjoy all the GetProperty calls scattered
about my code. The problem is, if | were allowed to access all of
those fields directly, being the lazy person | am, my objects would
turn into glorified structures with the single notational convenience
of not needing to pass the struct into a procedure.

E.g
st_object->Print

VS.
Print,st_object

The real point of an object is to hide as many operational details as
possible from it's user. This isn't always convenient. But it does
pay off in the long run in terms of re-use and code isolation. There
are plenty of places IDL's objects could use improvement, but strict
comparison against the questionable feature-set of some popular
object-based languages may not be the most productive avenue for
discovering them.

JD

Page 2 of 2 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

