Subject: Re: overload init function in class/object ?
Posted by JD Smith on Tue, 06 May 2003 21:32:45 GMT

View Forum Message <> Reply to Message

On Tue, 06 May 2003 13:34:06 -0700, David Fanning wrote:

> paul wisehart (wisehart@runbox.com) writes:

>

>>> |'m not sure what you mean by it, but it sure doesn't mean "define

>>> the same thing twice, in two different ways".

>> |n C++ thats exectly what it means :) Furthermore, thats what the term
>> "function overloading” means in general. But, | see know that | was

>> incorrect about IDL's interpretation of "function overloading”

>

> Really!? | can see now why we are *both* confused, because that sure as
> hell doesn't make any sense to me! :-)
>

In statically types languages such as C++, and other optionally-typed
languages, there is the notion of a subroutine's "signature", i.e. its
return type, number of arguments, and each argument's type, taken
together. Using the signature, a specific method can be chosen from
among a number of methods with the same name, but differing
signatures, e.g.:

class Example {
/I same name, three different methods
int sum (int a) { return a; }
int sum (int a, int b) { return a + b; }
int sum (int a, int b, intc) {returna+b +c;}

}

Since such languages must figure out which version of the "sum" method
to call (i.e. "bind" the method) at compile time, this is a nice way

of preserving the semantics of an operation (like "sum™) without
resorting to ugly names like sum_one, sum_two, and sum_three. Since
IDL is not statically-typed (and why would we want it to be), it has
(almost) no notion of signature overloading, nor does it need it. The
only situation where it does permit it relates to the duality of

procedures vs. functions, which can be thought of as a minimal

"binary" signature (e.g., returns nothing, or returns something). You
are allowed to use a single name for both a procedure and function
method within a class, e.qg.:

pro Obj::Foo,f
self.foo=f
end

Page 1 of 2 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3377
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=17363&goto=34974#msg_34974
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=34974
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

function Obj::Foo
return,self.foo
end

and IDL will happily distinguish
obj->Foo

from

foo=0bj->Foo()

However, since arguments are always optional by default, and type is a
run-time property, signature overloading is easily reproduced, and

made even more convenient with keywords. Another bonus: you probably
won't find yourself in need of signature overloading very often, since

IDL's lack of type enforcement allows you to pass many more compatible
data types into the same piece of code. Whereas C++ would need:

int sum(int a, int b)

float sum(float a, float b)
float *sum(float *a, float *b)
char *sum(char *a, char *b)

IDL can use the exact same method to add any numeric, array, or string
data type.

Note that overloading contrasts markedly from "overriding”, which IDL
does support, and relates to the familiar parent/child method of
replacement or refinement typified in statements like:

if (self->Parent::Init(_ EXTRA=e) ne 1) then return,0

JD

Page 2 of 2 ---- Cenerated from conp. |l ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

