Subject: Re: Function referencing/automatic defintion question.
Posted by Paul Van Delst[1] on Fri, 30 May 2003 16:29:41 GMT

View Forum Message <> Reply to Message

"Robert S. Hill" wrote:

>

> Paul van Delst <paul.vandelst@noaa.gov> writes:

>> Please...interject. This is driving me nuts (can't you tell :0)

>

> Well, then -- emboldened, | press on.

>

>> My understanding is that when | _run_ the routine containing the snippet
>> above it gets to the line where the structure is defined and _compiles__
>> all the routines in the source file emiscoeff__define.pro. After that

>> my assumption is that all of those emiscoeff __define.pro contained

>> routines are available for use in the current scope, i.e. in the

>> routine that calls Allocate EmisCoeff().

>
> Just to be clear, here is more detail on what I think is probably

> happening. I'm assuming here that your calling code is from a main
> level program that you run using the .run command.

Nope. | never do that. My calling code is itself a function that | invoke from the main
level thusly:

IDL> print, compute_emissivity _coefficients(‘test_sensor_emissivity.nc', EmisCoeff)

The .run command doesn't interpret your calling program line by line.
Instead, it compiles it all into bytecode (or whatever RSI calls it),

then executes it. During this execution, the execution engine arrives
at your structure invocation with the curly braces, and it then invokes
the compiler to compile all the routines in the __define file.
Subsequently, the execution engine reaches the Allocate_ EmisCoeff()
invocation, but this has *already* been compiled as an array, so it
doesn't recognize it as a function (an array and function of the same
name can coexist happily).

V VVVVVYVYVYV

I'm thinking that something like this is happening but | don't understand exactly why. My
assumption has always been that once a routine has been compiled by default (i.e. it
precedes the routine that a source code file is named after in the file - your "inner"
routine) then that routine is accessible in all and any subsequent procedure/function
independent of their heirarchy. | think that assumption is flawed. My working assumption
now is that the "inner" routines in an IDL source code file are really only accessible to
the "outer" routine in a source file (i.e. with the same name as the file itself.)

unless you do something like the compile_opt strictarr or forward_function thingo.

> Although compile time and run time are not globally separated as in

Page 1 of 2 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4285
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=17534&goto=35379#msg_35379
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=35379
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> Fortran or C, they are separate for each routine, including any main

> level script. Even when you put a bunch of routines in one file, you

> need to be aware of the dependence hierarchy of any of them that are
> functions, and put the inner ones higher up in the file.

This | religiously do so...
> (Or use strictarr or forward_function.)
I've never needed these before.

The germ of a resolution is forming in my mind. I'm going to test some stuff when | get
some time next week. Thanks very much.

When 1 finally figure this out | just *know* everybody else will say "Well,...yeah, of
course - why would you think it would work the other way?" :0)

paulv

Paul van Delst

CIMSS @ NOAA/NCEP/EMC
Ph: (301)763-8000 x7748
Fax:(301)763-8545

Page 2 of 2 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

