Subject: Re: Function Maximum
Posted by faeriepunk on Fri, 20 Jun 2003 13:25:47 GMT
View Forum Message <> Reply to Message

Thanks everyone for your suggestions, I ended up writing a function to do a windowed brute force search because I wanted the continuous not discrete maximum of the function. Sometimes it's unfortunate not being a mathemetician, but thanks Craig for your analytical solution, it will work for this function!

Kate Morgan
Research Technician
Dept. of Medical Imaging
University of Toronto

```
Paul van Delst <paul.vandelst@noaa.gov> wrote in message
news:<3EF225E6.33D91065@noaa.gov>...
> Kate wrote:
>>
>> If I have a function definition, say it is
>>
>> FUNCTION MYGAMMA, X, P
    RETURN, P[0]*(X^P[1])*EXP(-1*X/P[2])
>> END
>> Where P holds my fit parameters that are already determined.
>>
>> If I want to find a local maximum in a certain range is it possible to
>> do this with an existing written IDL function?
>
  How about something like:
>
>
   maxY = MAX(mygamma(X,P))
>
>
> ?
  You already have your P's and your X's define the range in which the maximum is sought. If
> you need the X-value of the maximum, then
>
   maxY = MAX(mygamma(X,P), maxXLoc)
>
   maxX = X[maxXLoc]
>
 If you don't want to carry around a bunch of X-vectors, then why not do something like:
>
   FUNCTION FINDMAX, Xr, P, UserFunction
```

```
X1 = DOUBLE(Xr[0]); The beginning of the range
>
    X2 = DOUBLE(Xr[1]); The end of the range
>
    dX = DOUBLE(Xr[2]); The resolution within the range
>
>
    ; Compute the ordinate vector
>
>
    nX = LONG((X2-X1)/dX) + 1.5d0)
    X = (DINDGEN(nX) / DOUBLE(nX-1)) * (X2-X1) + X1
>
>
    ; Find the maximum value of your user function
>
    Y = CALL FUNCTION( UserFunction, X, DOUBLE(P) )
>
    maxY = MAX( Y, maxXLoc )
>
    maxX = X[ maxXLoc ]
>
>
    ; Return the coordinate of the local max
>
    RETURN, [ maxX, maxY ]
>
>
   END
>
> where the Xr input defines the function range [x1,x2] and the resolution at which the
> function is calculated (Sort of like a loop triplet.)
>
> Otherwise maybe you could use something like the FX ROOT function to find the roots of the
> first derivative of your function (via DERIV or your own calculated derivative) and use
> the second derivative to determine if it's a max or min.
> paulv
```