
Subject: Re: Astronomys` Sixth Neighbour Needs Help
Posted by JD Smith on Mon, 28 Jul 2003 06:22:48 GMT
View Forum Message <> Reply to Message

On Fri, 25 Jul 2003 19:14:09 -0700, astronomer wrote:

> I can begin to imagine how people must have felt when electricity became
> widely available... or when the wheel was invented even!!!

Bruno,

This is an excellent test problem that demonstrates well the variety
of tradeoffs one must make to get good performance out of IDL.
Pavel's method demonstrates the vectorized version of a brute force
technique, cast in terms of (potentially rather large) arrays. It is
essentially the exact analog of your method, but designed to use array
operations, which IDL is very good at (especially large arrays -- it's
what it was designed for).

The reason why your method performed so poorly is that IDL "for" loops
impose a fairly large (compared to other languages) overhead on each
cycle. For the curious, this is likely because it must travel around
the full interpreter loop on each iteration, possibly compiling
things, processing background widget events, looking for keyboard
input, processing signals, etc. -- very different from, e.g., a loop
in C, which runs quite close to the hardware. As Pavel points out, if
you can do a substantial amount of work in each loop iteration -- more
than the large constant overhead imposed by that cycle -- "for" loops
can give perfectly good performance (despite the quasi-fanatical
facetious rantings to the contrary you may find on certain respected
IDL resource sites).

So one way to get good speed to is to re-cast your problem in terms of
the largest array operation you can, and then let IDL do what it does
best: chew on those arrays. Let's see how this applies to your
problem. Pavel had a few bugs in his code, and I like to build big
arrays another way, so here's my version of the vectorized brute force
search:

function nth_neighbor, x, y, k
 n = n_elements(x)
 dn = fltarr(n,/NOZERO)
 d=(rebin(transpose(x),n,n,/SAMPLE)-rebin(x,n,n,/SAMPLE))^2 + $
 (rebin(transpose(y),n,n,/SAMPLE)-rebin(y,n,n,/SAMPLE))^2
 for i=0L,n-1 do dn[i] = sqrt(d[(sort(d[*,i]))[k],i])
 return, dn
end

Page 1 of 5 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3377
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=17723&goto=35955#msg_35955
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=35955
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

What am I doing here? I just make a huge array to compare every point
with every other point, all at once. I do this by making pairs of
arrays which are the tranpose of each other and subtracting them.
E.g. for 4 points, computing dx looks like:

 x0 x0 x0 x0 x0 x1 x2 x3
 x1 x1 x1 x1 x0 x1 x2 x3
dx = x2 x2 x2 x2 - x0 x1 x2 x3
 x3 x3 x3 x3 x0 x1 x2 x3

So, you see, this 16 element array contains all of the x deltas from
each point to each other point (in fact, it wastefully contains them
all twice, since for distance purposes x1-x2 and x2-x1 are equivalent,
plus it contains distances from each point to itself). If I do
something similar for the y values, subtract and add each squared, I
get a large array which contains the distances from each point to each
other point (actually the square of the distances... I save time by
skipping the square-root until it's needed at the end, since sorting
on d^2 and d gives the same result). I sort them row by row, and pick
out the nth member of the sorted list.

This method works well, and is fast compared to your method, but it
has a deep flaw, which you've already run up against. It requires the
use of arrays of size n^2 (16 in this small example). This gets big
fast! E.g., for 10,000 points, I might need 4 such arrays of size
10,000 x 10,000, which is around 1e8 x 4 x 4=1.6 GB of memory! You're
entirely limited by how much memory you have, or, more accurately, how
fast your disks and virtual memory sub-system are. While very fast
for small arrays which can fit in memory, it just doesn't scale up to
large data sets. Now you understand why the code choked on 15,000
points.

The reason brute force fails, cursed by slowness (in your method), or
huge storage needs (in Pavel's) is all those comparisons. If you have
to compare every single point to every single other point, that's
n*(n-1)/2 comparisons, at best.... e.g. n^2. But intuitively, why
should we compare all the points? We know the points way over on the
other side aren't going to be the closest, but we compute their
distances and sort on them as if they ever had a shot anyway. But how
can we decide if things are close or not without comparing all their
distances? A seeming catch-22.

One method is triangulation. IDL has a lovely function called
TRIANGULATE which can compute a so-called Delaunay triangulation (or
DT -- do read about it) which has some nice properties. One of these
properties is that the nearest neighbors of a point are either
connected to it directly by the DT, or connected through some closer

Page 2 of 5 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

point which is (mathematicians would say the nearest neighbors graph
is a "sub-graph" of the Delaunay). Here's a function based on this
property:

function nearest_neighbors,x,y,DISTANCES=nearest_d,NUMBER=k
 if n_elements(k) eq 0 then k=6

 ;; Compute Delaunay triangulation
 triangulate,x,y,CONNECTIVITY=c
 n=n_elements(x)
 nearest=lonarr(k,n,/NOZERO)
 nearest_d=fltarr(k,n,/NOZERO)

 for point=0L,n-1 do begin
 p=c[c[point]:c[point+1]-1] ;start with this point's DT neighbors
 d=(x[p]-x[point])^2+(y[p]-y[point])^2
 for i=1,k do begin
 s=sort(d) ; A wasteful priority queue, but anyway
 p=p[s] & d=d[s]
 nearest[i-1,point]=p[0] ; Happy Day: the closest candidate is a NN
 nearest_d[i-1,point]=d[0]
 if i eq k then continue

 ;; Add all its neighbors not yet seen
 new=c[c[p[0]]:c[p[0]+1]-1]
 nnew=n_elements(new)
 already_got=[p,nearest[0:i-1,point],point]
 ngot=n_elements(already_got)
 wh=where(long(total(rebin(already_got,ngot,nnew,/SAMPLE) ne $
 rebin(transpose(new),ngot,nnew,/SAMPLE),1)) $
 eq ngot, cnt)
 if cnt gt 0 then begin
 new=new[wh]
 p=[p[1:*],new]
 d=[d[1:*],(x[new]-x[point])^2+(y[new]-y[point])^2]
 endif else begin
 p=p[1:*]
 d=d[1:*]
 endelse
 endfor
 endfor
 if arg_present(nearest_d) then nearest_d=sqrt(nearest_d)
 return,nearest
end

I won't go through all the details. Roughly, it just starts searching
out to nearby points on the DT, expanding outwards until it has

Page 3 of 5 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

enough. For each of the n points, instead of computing distances to
and sorting n points, it operates on a much smaller number. It gives
you back *all* of the indices (and, optionally, distances) of the k
nearest points, and has one quirk: for points on the boundary, the
point itself is included first on the list. You could obviously test
for this and reject them (since, with half their neighbors "missing",
they're suspect anyway). One other nice feature: once you build the
DT, you can cache it and use it again and again, if, e.g., you're
finding the nearest neighbors interactively.

Here are some timings comparing the two, for finding the 6th/1st-6th
neighbors of a random set of points:

 100 Points, 6 Nearest Neighbors
nxn: 0.0082000494
 DT: 0.030847073

Hmm... nxn does quite well there. But 100x100 is pretty small ;)

 1000 Points, 6 Nearest Neighbors
nxn: 0.79809201
 DT: 0.31871009

Starting to suffer, but we've still got a few MB of memory to spare.

 5000 Points, 6 Nearest Neighbors
nxn: 23.420803
 DT: 1.5785370

Here comes trouble. The relative timings will depend strongly on how
much memory you have. He're we're just managing to fit about 400MB in
memory, but danger looms ahead.

 7000 Points, 6 Nearest Neighbors
nxn: 152.13264
 DT: 2.3276160

With 800MB or so needed for that big nxn calculation on a 500MB
laptop, we really hit the disk this time. Notice how the DT method
doesn't miss a beat, just scaling up roughly as n.

Keep in mind that as the number of nearest neighbors you want gets
bigger, the brute force method starts looking better and better
(i.e. the problem gets harder and harder), but it still won't scale:

 1000 Points, 50 Nearest Neighbors
nxn: 0.81207108
 DT: 3.1622850

Page 4 of 5 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

And now, just to show it can be done:

 100000 Points, 6 Nearest Neighbors
 DT: 32.612031

I left out nxn since I didn't have a spare 200GB of memory to throw
around ;).

So, should we congratulate ourselves for having found a truly fast
record-setting algorithm? No, probably not. My code is actually
fairly sloppy in the inner loop, re-sorting things that are already
mostly sorted, finding and comparing more DT-connected points than
strictly necessary to get to the nearest set, concatenating and
re-allocating small arrays like mad. The point is, I could afford to
be sloppy, since the competition just couldn't scale. By working on
the inner loop, I could probably squeeze another factor of 3 out of it
in IDL. Carefully re-coded in C, you could easily see a factor of
50-100 speedup. But try something like
http://www.cs.umd.edu/~mount/ANN/ before you resort to that. The take
home lesson? IDL probably isn't the best tool if you need raw speed
on problems it isn't optimized for (adding arrays and the like), but
with a nice collection of tricks in your toolkit, you can take it
places it wasn't really designed to go.

JD

Page 5 of 5 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

