
Subject: Re: Object Method validity
Posted by Mark Hadfield on Tue, 12 Aug 2003 22:15:25 GMT
View Forum Message <> Reply to Message

Robert Moss wrote:

 > Mark Hadfield <m.hadfield@niwa.co.nz> wrote in message
news:<bh9457ctm1@newsreader.mailgate.org>...
 >
 >>Robert Moss wrote:
 >>
 >>>Is there a way to verify the existance of a particular object method?
 >>>Something like
 >>>
 >>>valid = Method_Valid(theObject, "HopedForMethod")
 >>>
 >>>I guess. I've spent a little while rtfm-ing and googling to no avail.
 >>
 >>I believe that the only generally valid approach is to call the method
 >>and trap any errors with a CATCH statement. This has the advantage(??)
 >>of actually calling the method and checking that your parameters are
 >>valid. Something like this (Warning: I haven't checked it and haven't
 >>generalised it to handled function-type methods)...
 >>
 >> catch, err
 >> if err ne 0 then begin
 >> valid = 0B
 >> goto, finished
 >> endif
 >> call_method, theObject, 'HopedForMethod', param0
 >> valid = 1B
 >> catch, /CANCEL
 >> finished:
 >>
 >>But be aware that if HopedForMethod is not bound to the class that
 >>theObject belongs to, then IDL will spend a significant amount of time
 >>searching the path for a file with the name
 >>
 >> obj_class(theObject)+'__hopedformethod.pro'
 >
 > That's what I was afraid of. Oh well, time for another minor feature
 > request. Thanks for taking the time to answer.

Are you really trying to answer the question "Does this method exist?"
rather than "Will this method call work?"

If the latter, then I believe the "try it and see" approach is
appealing because it answers the question in the most direct way

Page 1 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1027
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=17816&goto=36191#msg_36191
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=36191
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

possible. (I guess its major drawback is that it may be difficult to
clean up after the method call if it fails.) In this I am influenced
by my exposure to the Python language where "try it and see" is almost
always the preferred approach. ("Can I read another line from this
file?" "Try it and see!" "Will my database query work?" "Try it and
see!" "Does this object support the functionality I want?" "Try it &
see!")

If you really do want to answer the question "Does this method exist?"
then you *could* try to duplicate IDL's rules for resolving
methods. These are hinted at in the documentation, but there are
subtleties. I suggest you do a Google Groups search for a thread in
June 1998 entitled "Important object lesson". Here is an excerpt from
a posting of mine in that thread:

 This is my current working hypothesis, based on a little
 experimentation, a modest amoung of logic, generous conjecture & a
 minimal scanning of the documentation...

 If IDL encounters

 MyClass->MyMethod

 the three situations are:

 1. IDL finds a MyClass::Method in memory and uses it. (In the
 normal course of events the method will have been included in the
 myclass__define.pro, before the myclass__define procedure, so it
 will have been compiled the first time an instance of the class
 was created.) If MyClass::MyMethod is recompiled, the
 modifications are recognised.

 2. Not finding MyClass::Method, IDL searches up the inheritance
 tree, finds a ASuperClass::Method in memory and uses it for the
 remainder of the session. If MyClass::MyMethod is recompiled, the
 modifications are not recognised, because this method is never
 called. Which is confusing.

 3. Failing 1 & 2, IDL searches the !path for myclass__mymethod.pro
 (and maybe then for similar files for all superclasses). This can
 take a while. For ordinary methods, failure to find it results in
 an error. Obj_new and obj_destroy look for an Init and Cleanup
 respectively, but if they fail to find them, they just skip that
 step--until the next time & the next time & ...etc.

To look for methods that have already been compiled (steps 1 & 2), you
can use

Page 2 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 HELP, /ROUTINES, OUTPUT=routine_list

and then search routine_list for HopedForMethod, following the same
inheritance rules as IDL. Step 3 requires you to search the !PATH for
.pro and .sav files, but if you know that methods are always stored
along with class structure definitions in *__define.pro files then you
can skip this.

And then there's built-in methods and DLMs...Hmmm.

But, as I said above, if the question is really "Will this method call
work?" then "Try it and see!" is appealing

BTW I think my code, quoted above, was incorrect and should be

 catch, err
 if err ne 0 then begin
 valid = 0B
 goto, finished
 endif
 call_method, theObject, 'HopedForMethod', param0
 valid = 1B
 finished:
 catch, /CANCEL

--
Mark Hadfield "Ka puwaha te tai nei, Hoea tatou"
m.hadfield@niwa.co.nz
National Institute for Water and Atmospheric Research (NIWA)

Page 3 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

