Subject: Re: Inverting banded-block matrices.
Posted by Liam E. Gumley on Fri, 29 Aug 2003 15:32:04 GMT
View Forum Message <> Reply to Message

"James Kuyper" <kuyper@saicmodis.com> wrote in message news:3F4E8B4D.B90EDAA8@saicmodis.com...

- > I've got a problem where I have to calculate g = C D^-1 f, where g and f
- > are vectors, and C and D are matrices. C has m by m blocks, each of
- > which is itself an n by n matrix. It is banded, with k non-zero
- > co-diagonals above and below the main diagnal, both at the block level
- > and within each block. C[i,j] ge 0. Every statement I've made about C
- > also applies to D.
- > For the sake of definiteness, m=10, n=1354, k=3.

>

- > This seems like it should be a pretty common type of matrix structure
- > for problems involving 2-D grids. I could solve this by explicitly
- > inverting a m*n by m*n matrix. However, I would assume that there are
- > existing routines somewhere which can take good advantage of the
- > sparseness of these matrices to speed up the calculations considerably.
- > Could anyone point me at such routines?

I believe LAPACK routines were incorporated in IDL 5.6, however I have not tried them.

Cheers, Liam. Practical IDL Programming http://www.gumley.com/