Subject: Re: Please help me avoid loops and conditionals Posted by Craig Markwardt on Tue, 09 Sep 2003 19:30:42 GMT

View Forum Message <> Reply to Message

```
pford@bcm.tmc.edu (Patrick Ford) writes:
> function elp2, a, b, box_dim, vval, e_a,e_b, I_ratio
> x box = box dim/2
> box = intarr(box_dim,box_dim)
> o val = fix(vval / I ratio)
> v = fix(vval)
> for i = 0, box_dim-1 do begin
    for j = 0, box dim-1 do begin
       x = float(i - x_box)
>
       y = float(j - x_box)
>
       if( ((x/(a+e_a))^2 + (y/(b+e_b))^2) LE 1.0) then $
   if( ((x/a)^2 + (y/b)^2) LE 1.0) then box(i,i) = o_val $
>
   else box(i,i) = v
  endfor; j = 0, box dim-1 do
> endfor; i = 0, box dim-1 do
> return, box
> end
>
> So how do I go about converting this into a Boolean matrix operation
> that avoids all of this? Would it be faster to create a mask array
> such as:
>
  y = (transpose(x) / b)^2
It's close to what I would do.
I would start by creating the X and Y arrays more or less as you have
done:
 x = (fltarr(box_dim)+1) ## findgen(box_dim)
 v = findgen(box dim) ## (fltarr(box dim)+1)
and then initializing the array to zeroes:
 box = intarr(box dim,box dim)
then as you said, use the WHERE statement to pull out the values of
interest.
 wh = where (x/(a+e a))^2 + (y/(b+e b))^2 LE 1.0, ct
... and fill them in. You appear to have a two stage process.
 if ct GT 0 then begin
   box(wh) = o val
   wh1 = where((x(wh)/a)^2 + (y(wh)/b)^2 LE 1.0, ct1)
   if ct1 GT 0 then box(wh(wh1)) = v
 endif
```

Just as you, I didn't test this or nuthin'.
Good luck,
Craig

Craig B. Markwardt, Ph.D. EMAIL: craigmnet@cow.physics.wisc.edu Astrophysics, IDL, Finance, Derivatives Remove "net" for better response