Subject: Re: Vector comparison. Posted by tam on Thu, 20 Nov 2003 15:03:02 GMT

View Forum Message <> Reply to Message

David Fanning wrote:

```
> Reimar Bauer writes:
>
>> P.S. If we have all read it as carefully as mentioned what would we have
>> answered. Pavel will uses loops as well, we boths have not read
>> carefully enough, David hasn't replied.
>
>
> No, David was interested in the *answer*. He didn't
> have a solution of his own. :-)
> Cheers,
> David
How about the following, which handles duplicates in both arrays
and uses no loops.
; Find all of the indices of the elements
; in the first array that are matched in the second
 array
function match, a, b
   m = n_elements(a)
   n = n elements(b)
   ; Create an array with each possible pairing of the first
   : and last elements
   cmp = replicate(a[0], 2, m*n)
   ind = lindgen(m*n)
   ind0 = ind mod m
   ind1 = ind / m
   ; Just lay out the 'a' array multiple times.
   cmp[0,*] = a[ind0]
   ; Repeat each element of the 'b' array m times so that
   ; we get each a element paired with each b element.
   cmp[1,*] = b[ind1]
```

```
; Now find all of the matches.
   w = where(cmp[0,*] eq cmp[1,*])
   if (w[0] eq -1) then begin
     return, w
   endif else begin
; Handle multiples in the 'b' set.
; If the elements in 'b' are guranteed
; to be unique then we can just return 'w mod m'
h = histogram(w mod m, min=0)
return, where(h ne 0)
   endelse
end
```

Have I missed something here... I think this would be reasonably efficient. Probably don't want to have separate ind, ind0, and ind1 arrays, but I thought that might show the algorithm more clearly.

cmp[*,*] = [[a[lindgen(m*n) mod m][b[lindgen(m*n)/m]]

is not the kind of thing I can follow!

Regards, Tom McGlynn