Subject: Re: using convol with 2D image and 1D kernel Posted by David Fanning on Sat, 29 Nov 2003 19:17:41 GMT

View Forum Message <> Reply to Message

Bruce writes:

- > Hello, I was wondering what the convol(array,kernel) function does
- > when it is given a 2D array and a 1D kernel?
- > I have run through "Example 2" for the digital filter() function,
- > in which the 2D array "mandril" is convolved with the 1D array
- > "filter" (in Reference Volume 1):
- >
- > mandril = bytarr(512,512)
- > ..
- > mandril = float(mandril)
- > filter = digital_filter(0.0,0.1,50,10)
- > filt_image = convol(mandril,filter)
- >
- > I can see that the image is smoothed, but did convol()
- > 1) take the 1D kernel of size 1x21 and run it over the image, where
- > the result at each point is only influenced by points in the
- > horizontal direction,
- > OR
- > 2) take the 1D kernel and transform it into some 2D kernel of
- > dimension 21x21, and run that over the image, where the result is
- > now influenced by points in both the horizontal and vertical
- > directions?

If you do a "Help, filter" after the DIGITAL_FILTER step, you see that the filter is a 21-element 1D array. So the convolution is performed as in 1 above.

You can also see this because there will be black bands on the left and right edge of the image, since the example did not use the EDGE_TRUNCATE keyword. Had the filter been applied two-dimensionally, you would have seen a band around the entire image.

Cheers,

David

--

David W. Fanning, Ph.D.

Fanning Software Consulting, Inc.

Phone: 970-221-0438, E-mail: david@dfanning.com

Coyote's Guide to IDL Programming: http://www.dfanning.com/

Toll-Free IDL Book Orders: 1-888-461-0155