
Subject: Re: Cleaning up inherited object classes
Posted by JD Smith on Wed, 03 Dec 2003 22:12:29 GMT
View Forum Message <> Reply to Message

On Wed, 03 Dec 2003 12:28:27 -0700, M. Katz wrote:

> Cleaning up is my least favorite activity. Were my living room an IDL
> object I'm sure it'd be full of dangling pointer references. Here's a
> question regarding objects' Cleanup methods and inheritance.
>
> When an object inherits another object, methods can be overridden. So
> what happens to the CleanUp method? It is special.
>
> If my House object inherits the Living_Room and Bathroom object classes,
> will a call to HOUSE::CleanUp also call Living_Room::CleanUp and
> Bathroom::Cleanup when obj_destroy, self is called?
>
> Let me put that another way. Suppose an object class, A, has pointer
> fields. Unless someone tells me otherwise, I assume it's a good idea two
> specifically free the pointers in that object's Cleanup routine. Now,
> suppose another object class, B, inherits A. B has its own pointers to
> clean up as well, so I write that into its cleanup routine.
>
> It is sufficient to write the Cleanup methods like this?
>
> pro Bobj::CleanUp
> ptr_free, self.Bpointer
> obj_destroy, self
> end
>
> pro Aobj::CleanUp
> ptr_free, self.Apointer
> obj_destroy, self
> end
>
> Will Bobj::CleanUp's call to "obj_destroy, self" also call Aobj::Cleanup
> so that self.Apointer can be freed as the object is destroyed?
>
> Also, does the destruction of an object that contains a pointer field
> also inherently free the pointer? or is it necessary to specifically ask
> for that in the Cleanup?
>
> Now if I could only get the House::TakeOutTheTrash method to work
> reliably my wife would be thrilled.

You need to clean up dynamic memory in each object which contains any,
which means chaining your calls to Cleanup to superclass(es) --- IDL
never chains for you automatically (unlike some languages you may

Page 1 of 2 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3377
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=18276&goto=37263#msg_37263
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=37263
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

know), and OBJ_DESTROY is specifically trapped inside Cleanup (it
seems) to avoid recursive calls.

On the plus side, the lovely HEAP_FREE routine RSI gave us with IDL5.3
does a very nice job of cleaning up large data structures with lots of
dynamic data (pointers/objects) tucked into them. Though the manual
warns of inefficiencies, in the few cases I've tested, HEAP_FREE is
actually faster than the explicit alternative, even with thousands of
variables on the heap. I often write a cleanup method as simple as:

pro FooClass::Cleanup
 heap_free,self.data
 self->SuperClass::Cleanup
end

with the intention of fixing it later. Since I've found it to be just
as fast, and far less error prone, I generally just leave it, unless I
want to preserve some parts of the data (e.g. shared objects/pointers).

JD

Page 2 of 2 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

