Subject: Re: Does this make sense? (scalar objects) Posted by marc schellens[1] on Mon, 08 Dec 2003 15:10:07 GMT View Forum Message <> Reply to Message

```
JD Smith wrote:
> On Sat, 06 Dec 2003 01:33:07 -0700, Marc Schellens wrote:
>
>> JD Smith wrote:
>>
>>> For objects, it's quite clear why you can't apply methods across a
>>> vector of object variables:
>>
>>>
>>> IDL> objs=[obj_new('IDL_Container'), obj_new('MyFooObj')] IDL>
>>> obis->DoSomeMethod : WRONG
>>> Since objects are generic pointers, and a vectors of objects can
>>> contain any combination of object classes, it's clear why you can't use
>>> this notation. The same is true of pointer arrays, for nearly the same
>>> reasons:
>>>
>>> IDL> ptrs=[ptr_new('string'),ptr_new(indgen(5))] IDL> print,*ptrs+5
>>> :WRONG
>>
>> With the pointers it would be messy indeed (if your data is that uniform
>> that such an expression would really make sense, use an array). Another
>> thing is of course that there is no reason to not allow your example for
>> a single element pointer array.
>>
>>
>> With the objects though there would be no problem: Just let IDL call the
>> appropriate method for each individual object. I even would think that
>> this is more along the IDL array oriented way.
>>
>>
>
> And what if all of the objects in the array do not implement the same
> method, and what if the values they return cannot be concatenated into an
> array (e.g. one returns a string, another a floating vector). I
> originally was of your opinion, but have come to see how painful things
> could get.
Very simple: An error message will be issued.
```

Even now you can concatenate strings and numbers. And if you try to cancatenate arrays of non-matching dimensions you get an error message also.

And that different objects have different method functions is in the sense of object orientation.

```
>>> Single element vectors are different than scalars in several ways: they
>>> can be transposed, reformed, and rebinned, whereas scalars cannot, and
>>> they can have matrix multiplications applied to them, etc. A better way
>>> of asking the question is "What can't you do with scalars that you can
>>> do with vectors?". The answer to this consists of the long list of IDL
>>> vector operations discussed here daily. There may not be any *useful*
>>> distinctions between scalars and single-element vectors, but there are
>>> certainly plenty of programmatic distinctions, which would break
>>> backward compatibility if ignored --- hence, we are stuck with both.
>>
>> As I said, I agree that the cannot be abolished, but if from now on
>> scalars could be transposed, rebined, etc. (and reffering to my OP:
>> method called on single object arrays). This would not break any
>> existing code, would it?
>
> It's tough to say... probably none of my code, but I'm sure there are
> examples where the very inability to treat a scalar like a vector is
> capatalized upon.
>
I am (almost) sure there is no example.
Challenge: Can anybody reading this post one?
```

marc