
Subject: CALL_EXTERNAL to FORTRAN under SOLARIS
Posted by afl on Fri, 24 Feb 1995 22:36:43 GMT
View Forum Message <> Reply to Message

There has been some talk in this newsgroup about the use
of CALL_EXTERNAL under the SOLARIS operating system.
I must admit that I have had numerous difficulties with
this myself. I certainly have not done exhaustive testing
of the problems involved, but I have had some success using
CALL_EXTERNAL to access FORTRAN subroutines. Paul Mix of Sandia
National Laboratories provided most of the information I needed,
but there was a great deal of trial-and-error when it came to finding
the necessary libraries to link to in order to avoid errors of the type
which claim that certain symbols are not found. If it is helpful, I
would like to provide one IDL procedure, and two FORTRAN subroutines
which can be used ON OUR SYSTEM (SUNOS 5.3 -- SOLARIS) to pass
information back-and-forth between IDL and a FORTRAN subroutine.
All compilation and link statements are done within the procedure
using the spawn command, so I am not providing a MAKE file.
Note, there are a large number of "nonsense" function calls at
the end of the second subroutine. These are designed to test the
robust nature of the link.

*** One great lesson I have learned is that it appears to be necessary
*** to exit and re-enter IDL each time you wish to test the success
*** of linking different libraries. I have found that if you continue
*** to work within one IDL session, you may get things to work and not
*** know which combination produced the success, and therefore when you
*** "come in cold" to run the procedure, you may find it does not work!

 ;=== ============
; Originator: Andrew F. Loughe
;
; *** SUN SOLARIS TEST ***
; Procedure to call a FORTRAN program from within IDL.
; The first 100 primes are computed in the FORTRAN program and
; passed into an IDL vector called prime_nums.
; We pass into the subroutine the number of primes desired.
;
; NOTE: A large number of "nonsense" function calls are made
; from within the FORTRAN subroutine in order to test
; that the link is robust. It found a problem with
; atan2 and datan2.

; **** Set these for yourself ****
 DIR = '/bjer3/afl/ensemble/weights/src/idl/'
 LIB_DIR = '/usr/lib/'

Page 1 of 5 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=810
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=2603&goto=3749#msg_3749
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=3749
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

; This doesn't quite look like a shared object library!!
; May not need all three libraries, but for other tests I did need them.
compile = 1
if (compile eq 1) then begin
 SRC = DIR + 'primes.f '
 OBJ = DIR + 'primes.o '
 OUT = DIR + 'primes.so '
 LIB = LIB_DIR + 'libV77.a ' + LIB_DIR + 'libF77.a ' + $
 LIB_DIR + 'libsunmath.a '

 spawn, 'f77 -c -Kpic ' + SRC
 spawn, 'ld -G -o ' + OUT + OBJ + LIB
endif

num_primes = 100L ; Want 100 primes.
prime_nums = lonarr(num_primes) ; Initialize the prime_nums vector.

; Call a FORTRAN program to do the computation.
a = CALL_EXTERNAL(DIR + 'primes.so', 'primes_', num_primes, prime_nums)

print, prime_nums(*)

end

 C=== ============
C This routine accepts input from IDL's CALL_EXTERNAL Function.
C argc = The number of paramters being passed in from call_external
C argv = The vector of paramters being passed in from call_external

 Subroutine primes(argc, argv) ! Called by IDL

 Real argc, argv(*) ! Argc and argv are reals

 Integer num_expected
 parameter (num_expected = 2) ! Number of parameters
 ! expected by programmer

C Obtain # of arguements passed-in and check that this is correct.
 j = LOC(argc)
 if (j .ne. num_expected) then
 return
 endif

C Call subroutine with two parameters passed in.

Page 2 of 5 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 call primes1(%val(argv(1)), %val(argv(2)))

 return
 end

 C=== ===========
C Originator: Andrew F. Loughe
C
C *** SUN SOLARIS TEST ***
C A rather simple, inefficient, poorly nested, quickly written,
C subroutine (apology accepted?) to compute the first 100 primes.
C It is used to demonstrate the ability of IDL to call a FORTRAN
C subroutine to accomplish some task, accepting an input paramter,
C and returning some values.
C num_primes is passed into this subroutine from IDL.
C
C NOTE:
C Some nonsense function calls are added to see if our link is robust.
C From this test I learned that atan2 and datan2 are symbols which
C could not be found.

 subroutine primes1(num_primes, prime)

 implicit none

 integer i, j, icount, num_primes
 integer prime(num_primes)
 real r, r2
 double precision d, d2

 prime(1) = 2 ! By definition 1 is not prime.
 prime(2) = 3
 prime(3) = 5 ! Simple method requires specification
 prime(4) = 7 ! of primes under 10.
 icount = 4

C Loop through a large number of integers.
C Return only "num_primes" primes.
 do 100 i = prime(icount)+2, 1e8, 2

C Test for an even divisor.
 do 200 j = 3, int(sqrt(float(i))), 2
 if (mod(i,j) .eq. 0) goto 100 ! Number not prime.
 200 continue

C A prime has been found!

Page 3 of 5 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 icount = icount + 1
 prime(icount) = i
 if (icount .gt. num_primes-1) goto 300 ! Only want num_primes

 100 continue

C SOME NONSENSE FUNCTION CALLS:
C Sometimes a particular symbol is not found, so the CALL_EXTERNAL
C routine fails. Let's do some nonsense function calls to see if
C our link is robust. Sorry, not all FORTRAN functions are tested.

 300 i = 100
 r = 100.
 d = 100.

 i = iabs(i)
 r = abs(r)
 d = dabs(d)

 i = max0(i, 2)
 r = amax1(r, 3.)
 d = dmax1(d, d*d)

 i = min0(i, 2)
 r = amin1(r, 3.)
 d = dmin1(d, d*d)

 r = sqrt(r)
 d = dsqrt(d)

 r = exp(r)
 d = dexp(d)

 r = alog(abs(r))
 d = dlog(dabs(d))

 r = alog10(abs(r))
 d = dlog10(dabs(d))

 r = sin(r)
 d = dsin(d)

 r = cos(r)
 d = dcos(d)

 i = 100
 r = 100.

Page 4 of 5 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 d = 100.
 r2= .5
 d2= .5

 r = tan(r)
 d = dtan(d)

 r = asin(r)
 d = dasin(d)

 r = acos(r)
 d = dacos(d)

 r = atan(r)
 d = datan(d)

C COULD NOT FIND THESE SYMBOLS
C r = atan2(r, r2)
C d = datan2(d, d2)

 r = sinh(r)
 d = dsinh(d)

 r = cosh(r)
 d = dcosh(d)

 r = tanh(r)
 d = dtanh(d)

 return
 end
--
Andrew F. Loughe email: afl@cdc.noaa.gov
University of Colorado, CIRES voice: (303) 492-0707
Campus Box 449 fax: (303) 497-7013
Boulder, CO 80309-0449 USA

Page 5 of 5 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

