Subject: Re: Unique combinations from a 1d array
Posted by dapoulio on Thu, 15 Jan 2004 16:57:33 GMT

View Forum Message <> Reply to Message

"Christopher Lee" <cl@127.0.0.1> wrote in message
news:<20040115.100039.165344818.13691@buckley.atm.ox.ac.uk>...

> In article <MPG.1a6f72c6de3bcc529897a0@news.frii.com>, "David Fanning”
> <david@dfanning.com> wrote:

>

>

>> Darren writes:

>>

>>> Does anyone know of a more efficient means to determine the set of all
>>> unique combinations of 2 from a 1d array? The following is an approach
>>> that works but for large arrays -say 3000 or more elements it is very
>>> slow. Part of the problem is due to memory because the number of paired
>>> comparisons becomes very large ? i.e. for 3000 elements the total

>>> number of combinations is 4498500. Writing the paired difference

>>> results to a temporary file helped considerably, but is still far too

>>> slow. Any ideas would be much appreciated. Here is the code | have:
>>> X = [X1, X2, X3?..Xn+1]

>>> n = n_elements(X)

>>> d = make_array(1, /float)

>>> for i=0, n-1 do for j=0, n-1 do begin

>>> ifile j then begin

>>> d=[d, X[i] - X[il]

>>> endif

>>> endfor

>>> d =d[1:n-1]

>

> Hi,

>

> I'm with David on what your code actually *does*. Especially since I'm
> not sure if the last line should be 1:n-1 or 1:* (since n_elements(d) >
> n) ? Your 3000 makes 449000 argument says 1:* .

>

> So, incrementally 'improving' your code.

>

> X =[X1,X2,X3,X4,...Xn+1]

> n=n_elements(X)

> d=make_array(type=size(x,/type), dimension=total(findgen(n)))

> c=0L

> for i=0, n-1 do for j=i+1, n-1 do begin

> d[c]=X[i]-X[]]

> c=c+l

> endfor

>

>

;timing results for an N element array are

Page 1 of 3 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4925
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=18475&goto=37709#msg_37709
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=37709
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

N yours (S) mine (s)
10 0.0033 0.0028
100 0.026 0.011
1000 (too long) 0.61
10000 *xx* 61.0
etc.

Of course, under a few thousand elements there are fun matrix
methods, i.e

n=n_elements(x)

y=findgen(n)

val=x#replicate(1,n) - x##replicate(1,n)
mask=y#replicate(1,n) - y##replicate(1,n)

;upper diagonal of val contains the unique elements I think.
return, val[where(y gt 0)]

that one comes in at 0.099s for 1000 points, but there's a health warning
attached to it, its a memory hog at ~(3*N"2) instead of ~(N"2), which doesn't
sound bad but itis :) | couldn't get results for the 10000 point case, but

for 2000 (1.0s c.f 2.4s) and 4000 (1.5s c.f 9.4s) it is faster.

VVVVVVVVVVVVVVVVVVVYVYVYVYVYVYV

Chris.

Thanks David and Chris, you're right the code | posted was incorrect
and | apologize for it being misleading. The following is the code
that | should have posted to demonstrate my problem:

X = [X1,X2,X3,X4,...Xn+1]
n = n_elements(X)
d = make_array(1, /float)
for i=0, n-1 do for j=0, n-1 do begin
if i It j then begin
d = [d, X[i] - X[l
endif
endfor
d = d[1:(n_elements(d)-1)]

Just to be clear in summarizing -for a 3 element array (i.e [0,1,2])
the total combinations are 3:

01

02

12

Page 2 of 3 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

The total combinations can be found using:

n!/(n-p)*p!

Where n is the total number of array elements and p is the size of the
desired combination in my case p = 2.

Both of the code examples given by Chris do this much more efficiently
than what | posted. For 3000 cases, the matrix approach came in at
0.614s and the loop approach at 2.414s on my 2.4 GHz Pentium. However,
| believe there was a typo for the matrix approach on the last line

which should read i¢ Yzreturn, vallwhere(mask gt 0)]' to give the array of
paired differences.

Thanks again,

Darren

Page 3 of 3 ---- Cenerated from conp. |l ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

