
Subject: Re: Unique combinations from a 1d array
Posted by Chris Lee on Thu, 15 Jan 2004 10:00:39 GMT
View Forum Message <> Reply to Message

In article <MPG.1a6f72c6de3bcc529897a0@news.frii.com>, "David Fanning"
<david@dfanning.com> wrote:

> Darren writes:
>
>> Does anyone know of a more efficient means to determine the set of all
>> unique combinations of 2 from a 1d array? The following is an approach
>> that works but for large arrays -say 3000 or more elements it is very
>> slow. Part of the problem is due to memory because the number of paired
>> comparisons becomes very large ï¿½ i.e. for 3000 elements the total
>> number of combinations is 4498500. Writing the paired difference
>> results to a temporary file helped considerably, but is still far too
>> slow. Any ideas would be much appreciated. Here is the code I have:
>> X = [X1, X2, X3ï¿½..Xn+1]
>> n = n_elements(X)
>> d = make_array(1, /float)
>> for i=0, n-1 do for j=0, n-1 do begin
>> if i le j then begin
>> d = [d, X[i] - X[j]]
>> endif
>> endfor
>> d = d[1:n-1]

Hi,

I'm with David on what your code actually *does*. Especially since I'm
not sure if the last line should be 1:n-1 or 1:* (since n_elements(d) >
n) ? Your 3000 makes 449000 argument says 1:* .

So, incrementally 'improving' your code.

X = [X1,X2,X3,X4,...Xn+1]
n=n_elements(X)
d=make_array(type=size(x,/type), dimension=total(findgen(n)))
c=0L
for i=0, n-1 do for j=i+1, n-1 do begin
	d[c]=X[i]-X[j]
	c=c+1
endfor

;timing results for an N element array are

N yours (s) mine (s)

Page 1 of 2 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4772
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=18474&goto=37715#msg_37715
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=37715
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

10 0.0033 0.0028
100 0.026 0.011
1000 (too long) 0.61
10000 ***** 61.0
etc.

Of course, under a few thousand elements there are fun matrix
methods, i.e

n=n_elements(x)
y=findgen(n)
val=x#replicate(1,n) - x##replicate(1,n)
mask=y#replicate(1,n) - y##replicate(1,n)
;upper diagonal of val contains the unique elements I think.
return, val[where(y gt 0)]

;
that one comes in at 0.099s for 1000 points, but there's a health warning
attached to it, its a memory hog at ~(3*N^2) instead of ~(N^2), which doesn't
sound bad but it is :) I couldn't get results for the 10000 point case, but
for 2000 (1.0s c.f 2.4s) and 4000 (1.5s c.f 9.4s) it is faster.

Chris.

Page 2 of 2 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

