Subject: Re: Unique combinations from a 1d array
Posted by Chris Lee on Thu, 15 Jan 2004 10:00:39 GMT

View Forum Message <> Reply to Message

In article <MPG.1a6f72c6de3bcc529897a0@news.frii.com>, "David Fanning"
<david@dfanning.com> wrote:

> Darren writes:

>

>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>

Hi,

Does anyone know of a more efficient means to determine the set of all
unigue combinations of 2 from a 1d array? The following is an approach
that works but for large arrays -say 3000 or more elements it is very
slow. Part of the problem is due to memory because the number of paired
comparisons becomes very large i¢ Yz i.e. for 3000 elements the total
number of combinations is 4498500. Writing the paired difference
results to a temporary file helped considerably, but is still far too
slow. Any ideas would be much appreciated. Here is the code | have:
X =[X1, X2, X3i¢%..Xn+1]
n = n_elements(X)
d = make_array(1, /float)
for i=0, n-1 do for j=0, n-1 do begin

if i le j then begin

d = [d, X[i] - X[l

endif
endfor
d = d[1:n-1]

I'm with David on what your code actually *does*. Especially since I'm
not sure if the last line should be 1:n-1 or 1:* (since n_elements(d) >
n) ? Your 3000 makes 449000 argument says 1:* .

So, incrementally ‘improving' your code.

X =

[X1,X2,X3,X4,..Xn+1]

n=n_elements(X)

d=make_array(type=size(x,/type), dimension=total(findgen(n)))
c=0L

for i=0, n-1 do for j=i+1, n-1 do begin

d[c]=X[i]-X[i]

c=c+1

endfor

;timing results for an N element array are

N

yours (S) mine (s)

Page 1 of 2 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4772
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=18474&goto=37715#msg_37715
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=37715
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

10 0.0033 0.0028

100 0.026 0.011
1000 (too long) 0.61
1000Q ***** 61.0
etc.

Of course, under a few thousand elements there are fun matrix
methods, i.e

n=n_elements(x)

y=findgen(n)

val=x#replicate(1,n) - x##replicate(1,n)
mask=y#replicate(1,n) - y##replicate(1,n)

;upper diagonal of val contains the unique elements I think.
return, val[where(y gt 0)]

that one comes in at 0.099s for 1000 points, but there's a health warning
attached to it, its a memory hog at ~(3*N"2) instead of ~(N"2), which doesn't
sound bad but it is :) | couldn't get results for the 10000 point case, but

for 2000 (1.0s c.f 2.4s) and 4000 (1.5s c.f 9.4s) it is faster.

Chris.

Page 2 of 2 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

