Subject: Re: Working In 3-Space
Posted by Rick Towler on Fri, 13 Feb 2004 01:13:59 GMT

View Forum Message <> Reply to Message

"David Fanning" wrote in message...

> Mike Maroney writes:

>

>> | have a linked list of arrays, each containing a bunch of structures

>> with 3-space verticies P0:(x0,y0,z0)->P1:(x1,y1,z1) of dx length, as

>> well as color info on the segment. What | want to do is plot all the

>> data on one plot, connecting each PO to each P1 by a tube.

>>

>> | am able to use PLOTS to plot this data with lines, but as soon as 3D
>> shapes enter the picture everything gets screwy. | can use MESH_OBJ
>> to create a cylinder, but | can't seem to orient it or scale it

>> properly; I'm messing around with T3D, but it seems like there must be
>> an easier way to do this.

>
> Uh, | guess. Object graphics.

>

> Rick Towler will be getting back to you ASAP. :-)

Hummm, it seems my beeper is malfunctioning. Sorry for the delay :)

As David said, object graphics is the way to go.

Before you get too fancy, think about how you are going to view this. If

your data range is large and you view the whole scene, your tubes are going
to look like lines so it may not be worth the hassle. In this case you

would be able to use the IDLgrPolyline object similar to using PLOTS with
direct graphics.

But if tubes are what you need, then tubes are what you'll get. There are a
couple of ways to approach this.

You could use MESH_OBJ to create tubes with local (data) coordinates that
are in world coordinates. To do this create a "revolution” object where
arrayl contains 2 points defining a vector parallel to your VO->V1 vector
which is translated along a vector perpendicular to your VO->V1 the distance
of the tube radius. P2 would be [x0,y0,z0] and P3 would be
[x1,y1,z1]-[x0,y0,z0]. The resulting vertices and polygon array could be
passed to IDLgrPolygon, dropped into an instance of IDLgrModel and
displayed. No transformation of the objects would be required since the
tube will already be oriented and scaled.

The second approach would be to create a "unit length” tube (using mesh
object), then transform it to the appropriate place in world coordinates.
This approach isn't necessarily better unless repeated calls to MESH_OBJ was

Page 1 of 3 ---- Generated from conp. | ang.idl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=2728
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=18620&goto=37970#msg_37970
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=37970
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

a bottleneck. Which | don't think it will be. If you want to go this route
| can map it out.

Here is an example of the first method. Note that you will have to handle
the special case where (v1-v0) =[0,0,1].

Have fun!

-Rick

function makeTube, vO, v1, tubeRadius, pl
; MESH_OBJ params
p2 =v0
p3 =vl-v0
; Calculate the x-product
; You'll have to handle special case where p3==[0,0,1]
cp = CROSSP(p3,[0.,0.,1.])
; Normalize x-product
s = SQRT(TOTAL(cp”2))
cp=cp/s

: Create the line to rotate
arrayl = [[v0],[v1]] - REBIN(tubeRadius * cp, 3, 2)

; Create the mesh
MESH_OBJ, 6, verts, polys, arrayl, P1=pl, P2=p2, P3=p3

; Create a polygon and a line representing the original vector
oTube = OBJ_NEW('IDLgrPolygon’, verts, POLYGONS=polys, $
COLOR=[255,100,50], STYLE=1)
oVec = OBJ_NEW('IDLgrPolyline’, [[vO0],[v1]], COLOR=[50,100,255])
RETURN, [oTube, oVec]
end

pro tubularDude

tubeRadius = 0.1
pl=20

oModel = OBJ_NEW('IDLgrModel’)

v0 = [-2.,0.,1.]

Page 2 of 3 ---- Generated from conp. | ang.idl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php

vl =1[-1.,1.,0.]
oModel -> Add, makeTube(vO0, v1, tubeRadius, pl)

v0 =[-1.,1.,0.]

vl =[0.,0.,0.]

oModel -> Add, makeTube(vO, v1, tubeRadius, pl)
v0 =[0.,0.,0.]

vli=[1,1.,1]

oModel -> Add, makeTube(v0, v1, tubeRadius, p1l)
XOBJVIEW, oModel, /BLOCK

OBJ_DESTROY, oModel

end

Page 3 of 3 ---- Cenerated from conp. |l ang.idl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php

