Subject: Re: Destroying objects
Posted by JD Smith on Tue, 17 Feb 2004 20:30:20 GMT

View Forum Message <> Reply to Message

On Mon, 16 Feb 2004 15:06:35 -0700, David Fanning wrote:

>

>

>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>

VVVVVVVVVVVVVVVVYVYVVYVYVYVYVYVYV

JD Smith writes:

| wonder if you can expand on this error handling technique a bit.

One feature | like to have is the ability for errors to "just work",
regardless of if the object is being used on the command-line, or via

its GUI. In the latter case, errors should be trapped and displayed

in a pop-up. In the former case, they should call MESSAGE to print to
the command line and exit. I've managed it so far by having a
super-class which implements Error, Warning, and other methods, which
checks to see if you are in a command-line invocation or not, and uses
message or dialog_message as appropriate. Suitable use of CATCH
allows deep errors in other routines further down the stack (ones you
didn't write, for instance) to be handled in the same way, but that
requires some care to "set the trap” when necessary. This is somewhat
similar to the way XManager can catch and disregard errors (as it does
by default), but with reporting, and valid even when XManager isn't
running.

| would have thought you knew me well enough by now, JD,
to realize that if | don't immediately provide the IDL

code to solve a problem I'm either trying to get rich (ha!)

or the solution is so simpleminded | prefer to not risk

certain embarrassment. Alas, it is the latter in this case. :-(

We don't do anything fancy. All our methods contain standard
error handler code in them, added with a @error_handler

sort of call. (We originally had one code fragment because | figured
out a really slick way to tell if | was in a procedure or function
and | could either return something or not, but the method

used an EXECUTE function. When we wanted to run on the VM,
we had to go to two error handlers: one for procedures

and one for functions. What a shame!) The error handler

simply sets up a CATCH for the method. If an error is caught,

it is dispatched to our ERROR method, which is attached to

the "atom" object all objects inherit.

When we get an error we can handle in our error handler,

we add a "handled" to the front of the error message.

(I told you this was simpleminded.) As the error propagates
back up the object chain, if the error handler sees a "handled"
in front of the message it returns immediately.

Pag

el of 3 ---- CGenerated from conp. | ang.idl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3377
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=18626&goto=38019#msg_38019
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=38019
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> | can't think of a way to tell if the object is running

> at the IDL command line or not (I've shown you mine, you

> should show me yours), but our error handler can write to

> alog file (if there is one) or to the display. Typically,

> we issue a pop-up dialog (DIALOG_MESSAGE) with a short
> error message, and write a better formatted traceback of

> the error in the command output log of the display.

Interesting method. | would worry that putting an explicit CATCH in
each method might bog things down, if your events typically make
deeply nested excursions through dozens of routines (as mine often
do). On the other hand IDL's native routine-based error-propagation
is fast, but inflexible. | have a few methods for getting the best of
both worlds by putting a top-level CATCH-based handler at some
high-level, but this is complicated by non-blocking apps.

Since I'm not planning to get rich off of it, | don't mind showing you

my simple method for discriminating between command-line and GUI. |
require inheriting classes to override a "ReportWidget" method, like
this:

; ReportWidget - Return the widget to test the validity of to decide
; between graphical and text-based errors/warnings.

; Should be overridden. By default, looks for a class

; tag "winfo" which is a ptr to an info structure with

; a "Base" tag.

function ObjReport::ReportWidget
catch, err
if err ne 0 then begin
catch,/cancel
message, "No class tag pointer ‘winfo' with tag ‘Base' found. "+ $
"Override the ReportWidget Method?"
endif
if ptr_valid(self.winfo) then return,((*self.winfo).Base)
return,-1L
end

As it turns out, | often use a detachable self.winfo field for all
widget info, and the top level base is often attached to a "Base" tag
inside of that, so | don't typically need to override this, and the
default works fine. Then testing for the presence of the GUI is a
simple matter of:

Page 2 of 3 ---- Generated from conp. | ang.idl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php

function ObjReport::IsWidget
self.or_widget=self->ReportWidget() ;re-get the widget, it could be changing
return,widget_info(self.or_widget,/VALID_ID)

end

JD

Page 3 of 3 ---- Generated from conp. |l ang. i dl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php

