
Subject: Re: array multiplying (for a change)
Posted by Chris Lee on Wed, 18 Feb 2004 09:28:15 GMT
View Forum Message <> Reply to Message

In article <pan.2004.02.17.20.18.46.724041@as.arizona.edu>, "JD Smith"
<jdsmith@as.arizona.edu> wrote:
> JD
>  I can think of almost no case where a DLM wouldn't be faster; the real
>  questions is, is a DLM faster by a large enough margin to make it worth
>  it?

Indeed, I guess there's only one way I'll ever find out :(

>> CM
>> With that out of my system, I think that a slab-oriented multiply
>> would probably do okay.  By "slab oriented" I mean to expand B in a
>> few but not all dimensions, so essentially this will be a hybrid
>> between REBIN/REFORM and FOR-loop.

I did try this, though not with the IDL trick of specifying only the
start index (I thought this worked with the last dimension only?). A
quick test shows that this would double the speed.

Something for the weekend, perhaps :)

Chris.

>> CM 
>>  My philosophy is that DLMs are almost always bad, unless you are
>>  developing an embedded system.  They tie you to a particular version of
>>  IDL and a particular OS and architecture. They are rather difficult to
>>  debug, and making changes is rather laborious.  DLMs = bleccchhh.
>  That may be true to some extent, but I have a method for calling
>  compiled C code automatically within IDL which is, as far as I can tell,
>  as portable as possible.  The MAKE_DLM routine allows you to invoke a
>  standard compiler to produce a shared executable library.  A few other
>  tricks then check that the compilation succeeded, and execute the
>  compiled code (I usually just use CALL_EXTERNAL).  Is this guaranteed to
>  work?  No, of course not.  The compiler could be mis-configured or
>  missing.  But it does provide a decent degree of portability, and
>  completely relieves the end-user from having to know which end of a
>  compiler is up.  The AUTO_GLUE functionality makes it easy to call
>  existing functions (e.g. N.R.) without too much trouble. In my case, I
>  include an equivalent but slow version of the algorithm coded in IDL,
>  which I use as a fall-back if the compilation fails.  JD

Page 1 of 1 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4772
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=18641&goto=38109#msg_38109
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=38109
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

