
Subject: Re: vectorising versus loops
Posted by Craig Markwardt on Sun, 22 Feb 2004 18:43:19 GMT
View Forum Message <> Reply to Message

nasalmon@onetel.net.uk (Neil) writes:
> Does anyone know what the speed increase factor is in IDL programmes
> when going from "do loops" to full vectorisation of arrays? I know all
> programmes are different and not every process lends itself to
> vectorisation. However, there must be some rule of thumb, ie speed
> going as a linear function of the number of array elements times some
> factor.

A very simple rule of thumb is to vectorize when the overhead of doing
a FOR loop passes your "pain" threshold. Example: a one million
iterations of an "empty" loop like this:

 for i = 0L, 1000000L do begin & x = 0 & end

takes 0.25 sec on a reasonably modern machine I use. On an older
machine it takes 1.5 sec. You can do the same, and decide when the
loop overhead time per iteration passes your personal threshold. Bear
in mind that if you do multiple executions of the loop, you should
multiply that in.

Whether or not I go over my personal pain threshold, I tend to be
picky and try to vectorize anyway. My personal approach is to remove
the innermost loop and vectorize where possible.

> Also, are there any tricks to play if you want to vectorise loops that
> have IF statement decision in them, or any general rules for neat
> vectorisation of looped programmes?

Yes, there are several. You can use WHERE:

 ; Example, square root of DATA
 result = data*0 ;; Initialize result
 wh = where(data GE 0, ct) ;; Find non-negative data values
 if ct GT 0 then result(wh) = sqrt(data(wh)) ;; compute sqrt

This can get cumbersome sometimes, especially because the RESULT needs
to be initiiazed. In the square root example above, we don't need to
use WHERE(), since we can use other features of IDL like the threshold
operator.

 result = sqrt(data > 0) ;; Make all negative values of DATA zero

This is clearly more simple, faster, and easier to understand.

Page 1 of 2 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1763
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=18682&goto=38145#msg_38145
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=38145
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Another technique is to use a "mask" variable to set offending numbers
to zero. For example, when computing the gaussian function, one often
wants to limit the argument of the exponential to prevent overflows.

 ;; Example: compute gaussian function of X (mean=xmean, sigma=sigma)
 arg = -0.5*((x-xmean)/sigma)^2
 mask = abs(arg) LT 50 ;; Arbitrary limit of < sqrt(50) sigma

 result = exp(arg*mask) / (2*!dpi*sqrt(sigma)) ;; WRONG

Ah, but if you look carefully, multiplying by MASK will make an
argument of 0, so RESULT will be 1 in those positions. We have
avoided the under/overflow, but now the result is incorrect. This is
easily remedied however, since we can multiply by MASK again to set
these values to zero:

 result = mask*exp(arg*mask) / (2*!dpi*sqrt(sigma)) ;; CORRECT

Hope those examples give you some ideas. Good luck!
Craig

--
 -- --------------
Craig B. Markwardt, Ph.D. EMAIL: craigmnet@REMOVEcow.physics.wisc.edu
Astrophysics, IDL, Finance, Derivatives | Remove "net" for better response
 -- --------------

Page 2 of 2 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

