Subject: Re: GAUSS_FUNCT problem
Posted by Wayne Landsman on Fri, 27 Feb 2004 18:37:10 GMT
View Forum Message <> Reply to Message

```
> PRO GAUSS_FUNCT,X,A,F,PDER
>
    COMPILE_OPT idl2, hidden
    ON ERROR,2
                                :Return to caller if an error occurs
>
    n = n_elements(a)
>
    if a[2] ne 0.0 then begin
>
       Z = (X-A[1])/A[2] ;GET Z
>
       EZ = EXP(-Z^2/2.) ; GAUSSIAN PART
>
    endif else begin
>
       z = 100.
>
       ez = 0.0
>
    endelse
>
>
    case n of
>
       3: F = A[0]*EZ
>
       4: F = A[0]*EZ + A[3]
>
       5: F = A[0]*EZ + A[3] + A[4]*X
>
       6: F = A[0]*EZ + A[3] + A[4]*X + A[5]*X^2; FUNCTIONS.
>
    ENDCASE
>
>
```

- > Of course, the "fix" to this is to make Z an array of N elements with
- > each element set to 100 and EZ an array of N elements with each element
- > set to 0 in the case where A[2] is equal to 0. This ensures that F is
- > always an array.

Well, I can half-heartedly defend the existing code. Note that if one supplies 5 or 6 terms (linear or quadratic background) then GAUSS_FUNCT properly returns an array when A[2] = 0. In the case of 3 terms you are computing a function which only consists of a Gaussian with a sigma width of 0, which probably indicates that you have made an earlier mistake. So I don't begrudge GAUSS_FUNCT returning an anomalous result.

But yes, I agree that EZ should be set to an zero array of N elements in case A[2] = 0 (though it should probably be set to NaN wherever X = A[1]).

--Wayne Landsman