Subject: Re: Object Madness or Restoring Nightmares
Posted by David Fanning on Wed, 03 Mar 2004 20:26:36 GMT

View Forum Message <> Reply to Message

JD Smith writes:

| think it's actually simpler than that. | suspect that if you follow

the train of objects containing pointers to objects with pointers

etc., you'll find that some object somewhere beneath your "theStudy"
object actually has a pointer or object reference to the top-level
application object in it.

V VVVYV

OK, I like this theory. Here is my problem. (Those of you whose
eyes are already glazing over are excused. You can read the
Executive Summary to follow in a couple of days.)

My study object contains three object references: one to the imageCube
object that exists at the main application level and which is stored

as a field in the top-level object, and two to IDL container objects.

One container is empty, so don't worry about it. The other

container contains ImageSlice objects, which are abstractions simply

to draw a particular slice of the imageCube object. As such, they

also contain references to the original imageCube object. The only

other object an ImageSlice contains is a WindowIndex number reference
to a drawWidgetObject, that is a child of the "self" or main object.

This may be your connection back to the main object.

OK, before saving the studyObiject | null out the ImageCube reference,
and | go through both containers, get all the ImageSlice objects and

null out their imageCube references and their WindowlIndex references.
The imageSlice objects now don't point to anything, and the studyObject
only has references to ImageSlice objects that should be nulled out.

So now, | get the original data from the ImageCube object everyone has
been pointing to, and | save it *along* with the the studyObject in

a save file. (I need the data, that is the most important part of a

"study".)

Are you ready? | am chagrined to see that my save file (which you
remember should have been about 3 MB and was already a bloated
10 MB) is now nearly 13 MB!. And, | *still* have 1203 unnecessary
objects stored in my save file. | take it my save file is now all

the objects from before *plus* the real data.

Now, *all* objects in this program inherit from a single object
class. | can understand if we had to save down to that object
class. But | think IDL got down to that object class (CATATOM,
by the way) and saved *all* the current objects that inherit from

Page 1 of 4 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4003
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=18749&goto=38342#msg_38342
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=38342
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

that class! That is the only explanation that makes sense to me.

If that is true, | begin to understand some of the complexity of
the iTools system, which doesn't work with objects at all, but
with "descriptions” of objects. They would absolutely have to
do this or they could never save and restore any of their iTool
objects. Someone there must have run into this problem.

If this is the case, here's what happens: IDL very dutifully follows all
of these downward-linking object/pointer chains, collecting and saving
everything it finds on the way. This is the correct thing to do, since,
as far as it knows, to have a valid "theStudy” object on disk requires
all of its various holdings. Now, if at some point down the chain, IDL
runs into an object which is just a convenience reference to the top
level application object, it will dutifully jump right to the top of the
heap and start saving the whole thing.

V VVVVYVYVYV

| can't think how, in its current configuration, IDL could possibly get
back to the top. I've been through these objects with a fine-tooth comb.
There are *no* valid object references except to containers of objects
that do not have valid object references.

This is a problem. It's actually a bigger problem than you think,
because (see the various articles on your site describing it), any
object which is saved has implicit in it its class definition, so if you
accidentally save 10 extra objects of different classes along with the
one you're really interested in, when you restore them, any updates to
any of the class definition files (class__define.pro) will never be
consulted, since IDL thinks it already knows all about them. The
much-discussed solution is to explicitly resolve the class *before*
restoring the object. You can find my latest incarnation of my routine
which automates this here:

VVVVVVVYVYVYVVYV

http://turtle.as.arizona.edu/idl/restore_object.pro

Alas, that EXECUTE statement makes this virtually useless
to me except as an academic exercise. :-(

I've preferred not to think about this for the moment.

I'm just assuming the client is always working with a fully

compiled project so that which definition we are using is well-defined.
That will probably bite me later, as this project just never seems

to go away.

> So, how do you avoid this situation? What | do is "detach" all the
> irrelevant data from my object before saving it. I've talked about this
> before, but the basic idea is (in your terms):

Page 2 of 4 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

theStudy = self.currentStudy
theStudy->Save,'somename.sav'

with

pro theStudy::Save,filename
saved_ptr=self.BigAndUselessDataPtr ; detach
self.BigAndUselessDataPtr=ptr_new() ; a null pointer
save, self,FILENAME=filename
self.BigAndUselessDataPtr=saved_ptr ; reattach
end

and to restore it;

theStudy=restore_object(file,'theStudy")

if obj_valid(theStudy) then begin
if NOT obj_isa(theStudy,'theStudy') then $

message,'Error restoring Study file: '+file

;; The study is valid
obj_destroy,self.currentStudy
self.currentStudy=theStudy

endif

This requires, of course, that you plan ahead and group all of the data
that isn't necessary to include in the save file in some conveniently
detachable object or pointer (or perhaps a few of them). Aside

from convenience object references, widget data is a good

candidate for detachment. Detaching an object reference works just the
same, but with "obj_new()" instead of "ptr_new()".

VVVVVVVVVVVVVVVVVVVVVVVVYVYVYVYVYVYVYV

If I understand you correctly, this is exactly what | have

tried to do, and | find myself worse off than before. I've

appealed to the IDL newsgroup because the RSI technical support
people don't exactly like to hear from me with my "big file"
examples. :-)

Cheers,
David
P.S. Let's just say if you can't reduce the problem to a 10

line program you just don't understand it well enough to ask
guestions about it. :-)

David Fanning, Ph.D.

Page 3 of 4 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Fanning Software Consulting
Coyote's Guide to IDL Programming: http://www.dfanning.com/

Page 4 of 4 ---- Generated from conp. |l ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

