
Subject: Re: Object Madness or Restoring Nightmares
Posted by JD Smith on Thu, 04 Mar 2004 17:57:18 GMT
View Forum Message <> Reply to Message

On Wed, 03 Mar 2004 22:06:13 -0700, David Fanning wrote:

> David Fanning writes:
>
>> One of what I used to think of as the "advantages" of my
>> Catalyst Library is that it is an object hierarchy. If
>> you "draw" the top-level object, all the objects below
>> get "drawn" automatically. This means widgets appear,
>> images get drawn in windows, coordinate systems get set
>> up, etc. Neat.
>>
>> Similarly, if you "destroy" the top-level object, all the
>> objects below in the hierarchy get destroyed. No memory
>> leaks, no great effort involved. Very, very neat.
>
> Ah, here is the thing about this hierarchy that you
> should know. This is an object *containment* hierarchy.
> The top-level object is a container that holds all the
> other objects. Every object (except the top object) is
> both contained in a container and can (potentially)
> contain other objects. (All objects in my system
> inherit IDL_CONTAINER.)
>
> If you pick any object whatsoever out of this web,
> you can (apparently easily to judge from how fast
> IDL does it) traverse the entire object hierarchy.
> I can see that this is the reason IDL *must* save
> everything when I save even a single object that
> belongs in the hierarchy.
>
> What I can't see at the moment is a way out of
> this mess.

Why not implement a set of methods in your top-level which leverages the
inherent connectedness to detach unnecessary objects before saving? The
only technical problem is where to stick the detached objects while you
save (you can't stick them somewhere else in the object: you'll be back
to the same problem). This can be accomplished by dynamically building
a list of objects and their detached components and propagating it all
the way up to a variable at the top stack level at the time of the call.
Something like this:

pro topClass::Detach, detachlist, RECORD=rec
 if obj_valid(self.parent) then begin

Page 1 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3377
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=18749&goto=38408#msg_38408
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=38408
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 ;; Add to or create this object's "detached" record
 if n_elements(rec) gt 0 && ptr_valid(rec.Detached) then $
 *rec.Detached=create_struct('parent',self.parent,*rec.Detach ed) $
 else rec={Object:self, Detached: ptr_new({parent: self.parent})}
 self.parent=obj_new()
 endif
 ;; Stow our detached set on the list
 if n_elements(rec) gt 0 then begin
 if n_elements(detachlist) gt 0 then detachlist=[detachlist,rec] else
 detachlist=[rec]
 endif
 if ptr_valid(self.children) then $
 for i=0,n_elements(*self.children)-1 do $
 (*self.children)[i]->Detach,detachlist
end

pro topClass::Reattach, detached
 self.parent=(*detached).parent
 ptr_free,detached
end

pro topClass::ReattachList, list
 for i=0,n_elements(list)-1 do $
 if obj_valid(list[i].Object) && ptr_valid(list[i].Detached) $
 then list[i].Object->Reattach,list[i].Detached
end

pro topClass::Save, file, COMPRESS=comp
 self->Detach,list ;all our vital info is now stashed in list
 catch, serr
 if serr ne 0 then begin ;it failed!
 catch,/CANCEL
 self->ReattachList,list
 message,'Error Saving to File: '+file
 endif
 save,self,FILENAME=file,COMPRESS=comp
 catch,/CANCEL
 self->ReattachList, list
end

Now, when you say 'obj->Save, file', it will detach its unnecessary
parts, stowing them on the list for safe keeping, and then recursing
down to its children and so on, thus sending a propagating wave of
detachment all the way down the tree hierarchy. Then the object and its
children will be saved, and then everything will be re-attached by
iterating over the detached list. Notice how I was careful to reattach
everything in case of error too.

Page 2 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Now suppose some lower class has more than just the parent that it needs
to detach, e.g. some widget ids, irrelevant to keep track of, since of
course they will change. Then you can simply overload the Detach and
Reattach methods like so:

pro lowerClass::Detach,list, RECORD=rec
 if n_elements(rec) gt 0 && ptr_valid(rec.Detached) then $
 rec.Detached=create_struct('widget_info',self.widget_info, rec.Detached)$
 else rec={Object:self, Detached: ptr_new({widget_info: self.widget_info})}
 self.widget_info=ptr_new()
 self->topClass::Detach,list,RECORD=rec
end

pro lowerClass::Reattach, detached
 self.widget_info=(*detached).widget_info
 self->topClass::Reattach, detached
end

Here I allow for even further sub-classing with the same RECORD keyword.
Anyway, this (or rather some tested and debugged version of this),
should serve well enough to strip out all those troublesome back links
for saving. Of course, when you restore the object from disk, none of
the parent references will be valid, but perhaps this is not a problem,
if you're just using the data embedded in this structure. Another
option which is fancier but doable is to only trim parents which point
"above" you in the tree hierarchy. I leave that one as an exercise ;).

JD

Page 3 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

