
Subject: Re: Compiling file with many functions: huge performance difference
between IDL and IDLDE
Posted by mwvogel on Fri, 19 Mar 2004 11:30:54 GMT
View Forum Message <> Reply to Message

> You can find a hash_table implementation on the RSI user contribution
> site. Quick performance test for 12000 sets/gets:
> #hashes set/get per entry (ms)
> 13 6
> 101 0.8
> 1001 0.15
> 12000 0.08/0.05
>
> Talking about it:
> How would you calculate a hash value from a string? In C I would
> base it on the ASCII value of the chars, but in IDL? Above mentioned
> implementation converts the string via byte() and then loops over
> the resulting array. Is there a faster way (loops always take so long)?

For real short strings (up to approx 11 chars) one could replace

 ascii = ulong(byte(key))
 total = 0UL
 for i = 0, n_elements(ascii) - 1 do begin
 total = total * 37UL + ascii[i]
 ; 37UL is a magic number suggested by the literature
 endfor
 return, total
with
 ascii = ULONG(BYTE(key))
 total = ULONG(TOTAL(ascii *
ULONG(37D^(N_ELEMENTS(ascii)-FINDGEN(N_ELEMENTS(ascii)) -1)), /DOUBLE))
 return, total

However, TOTAL() produces a double, and is therefore prone to roundoff
errors, possibly reducing the hashing efficiency. Also, I am not so sure
that the for loop is that much slower for small arrays. At least the
original code is easier to read :-)

Page 1 of 1 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4596
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=18816&goto=38632#msg_38632
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=38632
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

