Subject: STRETCH: A bug?
Posted by timrobishaw on Fri, 19 Mar 2004 10:20:19 GMT

View Forum Message <> Reply to Message

Hey there,

So I've been thinking too much about color tables. | took a look at
IDL's STRETCH just to make sure it does as it advertises, but I'm
mostly sure it doesn't. I'm not so sure | want to run around saying
it's a bug, so | thought I'd run it by you guys for opinions.

The short of it, for those who might not want to read the junk below
is that I'm really convinced that STRETCH should be using BYTSCL()
rather than LONG() to determine the color table index mapping.

Anyway, here's the deal, in lots of (hopefully) easy-to-follow detail:

You have a color table running from 0 to NC-1, where NC is the number
of colors in the color table, ID.TABLE_SIZE. You would now like to
stretch the entire original color table over the indices LOW to HIGH

in the new color table and set all the indices below LOW to the value

0 and then set all the indices above high to (NC-1). This stretched
color table will also have NC indices and will replace the original

color table.

For instructional purposes, let's pretend we're running a few
Netscapes and we have 18 available colors:

IDL> NC =18
IDL> LOW =6
IDL> HIGH = 14

IDL's STRETCH achieves this stretching by first finding the slope of
the new color table:

IDL> slope = float(nc-1)/(high-low)

Then it finds the intercept, i.e., the index of the original color
table that would occupy the very first index of our new color table
after the stretching is done.

IDL> intercept = -slope*low

RSI then transforms to the new fractional color table indices:

IDL> pf = findgen(nc)*slope+intercept

So you're scaling your original color table such that you're

Page 1 of 3 ---- Generated from conp. | ang.idl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4701
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=18848&goto=38633#msg_38633
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=38633
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

guaranteed that new color table's value of ZERO will be located at
index LOW and the value of (NC-1) will be found at index HIGH:

IDL> print, pf
-12.7500 -10.6250 -8.50000 -6.37500 -4.25000
-2.12500 0.00000 2.12500 4.25000 6.37500
8.50000 10.6250 12.7500 14.8750 17.0000
19.1250 21.2500 23.3750
IDL> print, where(pf eq 0), where(pf eq nc-1)
6
14

Now, what we'd really like at this step is to evenly divvy up the

fractional indices between LOW and HIGH. Unfortunately, here is where
| think RSI makes a big mistake! They decided (in 1983) to operate on
the fractional values using the LONG() function:

IDL> print, long(pf)

-12 -10 -8 -6 -4
-2 0 2 4 6
8 10 12 14 17

19 21 23

What this does is subtle, yet important! LONG() will always return

the *FLOOR()* of the fractional value! (OK, it will be the FLOOR() if
the fractional value is POSITIVE, but we'll only be interested in the
positive indices!) So, the LONG()ing of the fractional values creates
the undesirable situation that there will be only one, single value of
the index (NC-1) no matter what the slope! If you think about this in
terms of making a histogram (which is really what you are doing here!)
you're reserving an entire bin for the single value of (PF EQ NC-1).
Just to make that clear, make a histogram!

IDL> h = histogram(pf,min=0,max=nc-1,binsize=1.0)
IDL> print, byte(where(h gt 0))
0 2 46 810 12 14 17

OK, you get the same result as the LONG()ing, but, again, what you've
done is put the left edge of your last bin on 17 such that you're
wasting a whole bin! Even worse, you've made the bins a little larger
than you should have (BINSIZE=1.0), so you've affected the entire
distribution of indices.

What you'd really like is to byte-scale the values between LOW and
HIGH in the original color table:

IDL> print, bytscl(pf,min=0,max=nc-1,top=nc-1)
0O 00O0OOOOZ24 6 811131517 17 17

Page 2 of 3 ---- Generated from conp. | ang.idl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php

17

This is definitely different than simply LONG()ing the fractional

indices. How do we understand this in terms of a histogram? Well,
now we're making NC bins stretched over the range 0 to (NC-1), so the
bin size should be (NC-1)/NC rather than 1.0! So making just such a
histogram exactly reproduces the BYTSCL result:

IDL> h = histogram(pf,min=0,max=nc-1,binsize=float(nc-1)/nc,reverse=r)
IDL> h = byte(where(h gt 0,nh))
IDL> print, h
0 2 46 911 13 15 18
IDL> b = byte(pf < (nc-1) > 0)
IDL> for i = 0, nh-1 do b[R[R[h[i]]:R[h[i]+1]-1]] = (h[i]<(nc-1))
IDL> print, b
0O 00O0O0OOO24 6 911131517 17 17
17

So, IDL got most of STRETCH right, but using LONG() instead of
BYTSCL() was a bad choice.

| guess the easy way to do the color table index mapping would be like
so:

ctindx = bytscl(((findgen(nc)-low)/(high-low) < 1.0 > 0.0)*gamma,
MIN=0, MAX=1)

So, RSI's algorithm is a little flawed.
Isn't this a "bug"... if you, ya know, care about doing things right?

-Tim.

Page 3 of 3 ---- Generated from conp. |l ang. i dl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php

