
Subject: Re: Finding the closest value in an array...
Posted by JD Smith on Tue, 30 Mar 2004 18:04:00 GMT
View Forum Message <> Reply to Message

On Tue, 30 Mar 2004 01:34:07 -0800, Tim Robishaw wrote:

> Hi there.
>
> Seems like every few minutes I'm taking a scalar and trying to locate
> which value in an array it's closest to. VALUE_LOCATE() finds the
> interval of a monotonic vector that the value lives in, so it's not
> quite what I'm looking for, but it's awfully close! I end up just
> doing this:
>
> IDL> useless = min(abs(vector-value),minindx)
> IDL> closest = vector[minindx]
>
> I'm embarrassed to admit I don't know of any other way to do this. Is
> there some slick way like VALUE_LOCATE() to do this? I find it
> aesthetically unpleasant to have to set something to a useless value
> just to get at the corresponding index; however, I can't see any way
> to be clever about it. And it's pretty much to the point: I'd bet
> VALUE_LOCATE() is doing a lot more stuff behind the scenes than the
> simple two lines above (judging from the old Goddard library routine).
>
> I guess I'm surprised that I haven't found some canned routine for
> this (like in the Goddard library) given that I usually need to find
> closest values more often than intervals in which a value lives.

For monotonic arrays, you know either one or the other of the two
bracketing values is the closest. VALUE_LOCATE is faster than
MIN(ABS()) since it relies on the monotonicity to skip rapidly through
the vector using bisection. This doesn't address your aesthetic
concerns, but it's much more efficient:

 j=value_locate(r,find)
 mn=min(abs(r[j:j+1]-find),pos)
 pos+=j

When compared to:

 mn=min(abs(r-find),pos)

the former can be *much* faster, especially for long arrays. While
the latter is linear in N, the former is logarithmic. For long
vectors, the speedup is tremendous:

 r=total(randomu(sd,2000000),/CUMULATIVE,/DOUBLE)

Page 1 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3377
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=18894&goto=38771#msg_38771
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=38771
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 find=max(r)/10.

 time2/time1=1230.2660

You can realize even bigger gains when searching for locations closest
to more than one value at once:

 n=2000000
 r=total(randomu(sd,n),/CUMULATIVE,/DOUBLE)
 find=max(r)*(findgen(20)/19

 j=value_locate(r,find)
 j=transpose(j)
 b=[j>0,(j+1)<(n-1)]
 mn=min(abs(r[b]-rebin(transpose(find),2,n_elements(find))),D IMENSION=1,pos2)
 pos2=j>0+(pos2 mod 2)

Here I've explicitly accounted for the first or last element of r
being the closest (which technically you should do even in the single
find value case). In this example, the speedup is >13000.

How about a really tough one:

 n=10000000
 r=total(randomu(sd,n),/CUMULATIVE,/DOUBLE)
 find=max(r)*(findgen(300)/299

In this case, the VALUE_LOCATE method is 126859x faster!

Anyway, it's probably worth putting this altogether in a function call,
like:

;; Find indices closest to find values in vector, which must be
;; monotonically increasing or decreasing, otherwise a sort vector
;; should be passed. Find can be a vector itself.
function closest,vector,find,SORT=s
 nf=n_elements(find)
 sort=keyword_set(s) || arg_present(s)
 if sort && n_elements(s) ne n_elements(vector) then s=sort(vector)
 j=value_locate(sort?vector[s]:vector,find)
 b=[[j>0],[(j+1)<(n_elements(vector)-1)]]
 mn=min(abs((sort?vector[s[b]]:vector[b])- $
 rebin([find],nf,2)),DIMENSION=2,pos)
 pos=j>0+pos/nf
 return,sort?s[pos]:pos
end

This version allows you to pass a sort vector (or have it defined for

Page 2 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

you on the first pass) for non-monotonic arrays. Note, however, that
if you have to sort your array first, and are only finding a single
value, there won't be much gain (and potentially loss) over the
MIN(ABS()) method.

JD

Page 3 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

