
Subject: Re: Pointers in IDL
Posted by Rick Towler on Tue, 13 Apr 2004 18:06:11 GMT
View Forum Message <> Reply to Message

"Benjamin Hornberger" wrote...

> 1. What are null pointers for?

There may be others but the big one is object class definition. I am going
to butcher the explanation but...

When you define the named structure of your object class you define the
element names and types. When you create an instance of your object
pointers and objects in this "self" structure are null, regardless of how
you defined them.

So say you wrote your object definition like so, using the /ALLOCATE_HEAP
keyword when defining your myPointer:

pro myobj__define

 self= {myobj, $
 myPointer:PTR_NEW(/ALLOCATE_HEAP) $
 }
end

If, when creating an instance of your object, myPointer was undefined (not
null) you should be able to assign it a value by simply dereferencing it:

function myobj::init, data

 *self.myPointer = data

 RETURN, 1

end

But this would fail with an "Unable to dereference null pointer" error. IDL
ignores your /ALLOCATE_HEAP keyword and always assigns null pointers to
pointer and object reference variables in class definition structures.

Our simple object would typically be written like:

function myobj::init, data

 self.myPointer = PTR_NEW(data)

Page 1 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=2728
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=5815&goto=39028#msg_39028
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=39028
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 RETURN, 1

end

pro myobj__define

 null = {myobj, $
 myPointer:PTR_NEW() $
 }
end

> 2. If I point a pointer to a variable (e.g. *ptr=indgen(100)) and later
> point it to a smaller variable (*ptr=indgen(50)), do I have a memory leak?
> I.e., do I have to free it before I re-reference it?

No. You only "leak" when you forget or are unable to free the pointer when
you are finished with it.

So the following is fine:

ptr = PTR_NEW(indgen(100))
*ptr = 'String'
*ptr = FINDGEN(50)
PTR_FREE, ptr

But this is bad:

ptr = PTR_NEW(indgen(100))
ptr = 'String'

ptr used to contain the reference to a heap variable, but we lost that
reference when set ptr = 'String'. Since we have lost our reference we
can't free the pointer and that memory will be lost for the rest of the
IDL session. (This isn't entirely true. You can reclaim lost heap variables
using the PTR_VALID function. Check the docs.)

> I want to write a GUI which can open files which contain arrays of varying
> size. Is it ok to define a pointer in the GUI to hold these arrays
> (ptr=ptr_new(/allocate_heap)), and then whenever I open a new file, just
> dereference to the new array (*ptr=array)? Or do I have to free the
pointer
> when I close one file and open another one?

No need to free until you exit your application.

Page 2 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

-Rick

Page 3 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

