
Subject: Re: simplify a polyline?
Posted by b_gom on Mon, 26 Apr 2004 18:29:23 GMT
View Forum Message <> Reply to Message

My motivation for doing this is to reduce the size of files generated
from plotting to a postscript device, or the contours output by the
contour procedure, for example. These files can have 10^5 vertices or
more.

The trouble with MESH_DECIMATE is that it is a memory hog. I tried to
do this with MESH_DECIMATE but gave up quickly.

Here's what I came up with instead. It is a quick transcription of the
Douglas-Peuker (1973) algorithm, as presented by Dan Sunday. Save all
the procedures in 'poly_simplify.pro' and compile. 'Test.pro' shows an
example. It should work in 2,3, or more dimensions. Its recursive, and
not particularly fast, but seems to work.

The trouble is deciding which tolerance value to use. I've tried a
simple way to do this automatically in the last lines of test.pro, but
the result is still dependant on the relative scale of the x and y (or
z) coordinates. There must be a better way..

poly_simplify.pro

function dot,x,y		;dot product
	return, total(x*y)
end

function norm2,x		;squared length of vector
;	return,dot(x,x)
	return,total(x^2)
end

function d2,x,y			;distance squared of difference between points x and
y
;	return, norm2(x-y)
;	return, dot(x-y,x-y)
	return,total((x-y)^2)
end

pro simplifyDP,tol,vertices,j,k,mk
; This is the Douglas-Peucker recursive simplification routine
; It just marks vertices that are part of the simplified polyline
; for approximating the polyline subchain vertices[j] to vertices[k].
; Input: tol = approximation tolerance
; vertices[] = polyline array of vertex points

Page 1 of 5 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4641
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=19029&goto=39213#msg_39213
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=39213
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

; j,k = indices for the subchain vertices[j] to vertices[k]
; Output: mk[] = array of markers matching vertex array vertices[]
	j=long(j)
	k=long(k)

	if (k le j+1) then return ; there is nothing to simplify

	; check for adequate approximation by segment S from vertices[j] to
vertices[k]
	maxi = j ; index of vertex farthest from S
	maxd2 = 0. ; distance squared of farthest vertex
	S = [[vertices[*,j]], [vertices[*,k]]] ; segment from vertices[j] to
vertices[k]
	u = S[*,1]-S[*,0] ; segment direction vector
	cu = dot(u,u); segment length squared

	;test each vertex vertices[i] for max distance from S
	;compute using the Feb 2001 Algorithm's dist_Point_to_Segment()
	;Note: this works in any dimension (2D, 3D, ...)

	;Pb = base of perpendicular from vertices[i] to S
	;dv2 = distance vertices[i] to S squared

	for i=j+1,k-1 do begin
		;compute distance squared
		w = vertices[*,i] - S[*,0]
		cw = dot(w,u)
		if cw le 0 then begin
			dv2 = d2(vertices[*,i], S[*,0]);
			endif else begin
			if cu le cw then begin
				dv2 = d2(vertices[*,i], S[*,1])
				endif else begin
				b = cw / cu;
				Pb = S[*,0] + b * u;
				dv2 = d2(vertices[*,i], Pb);
				endelse
			endelse
		;test with current max distance squared
		if dv2 le maxd2 then continue
		;vertices[i] is a new max vertex
		maxi = i
		maxd2 = dv2
		endfor

	if (maxd2 gt tol^2) then begin ;// error is worse than the tolerance
;		split the polyline at the farthest vertex from S
		mk[maxi] = 1	; mark vertices[maxi] for the simplified polyline

Page 2 of 5 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

;		recursively simplify the two subpolylines at vertices[*,maxi]
		simplifyDP, tol, vertices, j, maxi, mk ; // polyline vertices[j] to
vertices[maxi]
		simplifyDP, tol, vertices, maxi, k, mk ; // polyline vertices[maxi]
to vertices[k]
		endif
;		else the approximation is OK, so ignore intermediate vertices
	return
end

function poly_simplify,vertices,tol
	;vertices is a 2 or 3 (or more) by n array
	dim=size(vertices,/dimensions)
	n=dim[1]	;number of points
	if dim[0] lt 2 then begin
		message,'Vertices must be at least 2-D!',/cont
		return,vertices*0-1
		endif

	if n lt 2 then begin
		message,'There must be at least 2 Vertices!',/cont
		return,vertices*0-1
		endif

	vt=vertices*0 ; vertex buffer
	mk=bytarr(n) ; marker buffer

	; Mark vertices that will be in the simplified polyline
	;Initially Mark V0 and Vn
	; Recursively simplify by selecting vertex furthest away

;	STAGE 1. Vertex Reduction within tolerance of prior vertex cluster
	vt[*,0] = vertices[*,0]; start at the beginning
	k=1L
	pv=0L
	for i=1L,n-1 do begin
		if (d2(vertices[*,i], vertices[*,pv]) lt tol^2) then continue
		vt[*,k++] = vertices[*,i];
		pv = i
		endfor

	if (pv lt n-1) then vt[*,k++] = vertices[*,n-1]; finish at the end

	; STAGE 2. Douglas-Peucker polyline simplification
	mk[0] = 1
	mk[k-1] = 1 ; mark the first and last vertices

Page 3 of 5 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

	simplifyDP, tol, vt, 0, k-1, mk

	return, vt[*,where(mk)]; return simplified polyline
end

pro test
	RED = 	[0,	220,	255,	255,	255,	0,		0,		255,	160,	255]
	GREEN = 	[0,	140,	0,		127,	255,	255,	0,		0,		160,	255]
	BLUE = 	[0,	127,	0,		0,		0,		0,		255,	255,	160,	255]
	TVLCT,red,green,blue

	x=findgen(500)
	y=sin(x/100*30)/5+sin(x/1000*30)
	
	vertices=transpose([[x],[y]])

	window,0,xsize=1000,ysize=700
	plot,[min(x),max(x)],[min(y),max(y)],/nodata
	plots,vertices

	;distance between adjacent points
	d=(sqrt(total((vertices-shift(vertices,0,1))^2,1)))[1:*]

	;minimum distance in x or y.. between adjacent points
	dmin=min(abs((vertices-shift(vertices,0,1))[*,1:*]))
	;avg distance in x or y.. between points, whichever is smaller
	 davg=(moment(abs((vertices-shift(vertices,0,1))[0,1:*])))[0] <
(moment(abs((vertices-shift(vertices,0,1))[1,1:*])))[0]

	print,'smallest average distace in x or y:',davg,' number of output
vertices: ',n_elements(poly_simplify(vertices,davg))/2
	print,'minimum distance in x or y',dmin,' number of output
vertices: ',n_elements(poly_simplify(vertices,dmin))/2

	plots,poly_simplify(vertices,davg),psym=-4,color=2
	plots,poly_simplify(vertices,dmin),psym=-4,color=4

end

Page 4 of 5 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Ben Tupper <btupper@bigelow.org> wrote in message
news:<c6j2sf$coqvb$1@ID-189398.news.uni-berlin.de>...
> Brad Gom wrote:
>
>> I need a general purpose routine for reducing the complexity of a 2-d
>> polyline. For example, the output of the contour function contains
>> many redundant points, ie. many vertices may be removed as they fall
>> on a straight or nearly straight line. Has anyone implemented a
>> polyline simplification or decimation routine? I don't want to simply
>> smooth the input data.
> Hi,
>
> I haven't tried this, but I believe that you can use MESH_DECIMATE using
> your X, Y vertices coupled with a faked Z value. This is from the
> online description of MESH_DECIMATE
>
>> The MESH_DECIMATE function reduces the density of geometry
>> while preserving as much of the original data as possible.
>
> Ben

Page 5 of 5 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

