
Subject: Re: simplify a polyline?
Posted by Karl Schultz on Mon, 26 Apr 2004 17:44:28 GMT
View Forum Message <> Reply to Message

"Ben Tupper" <btupper@bigelow.org> wrote in message
news:c6j2sf$coqvb$1@ID-189398.news.uni-berlin.de...
> Brad Gom wrote:
>
>> I need a general purpose routine for reducing the complexity of a 2-d
>> polyline. For example, the output of the contour function contains
>> many redundant points, ie. many vertices may be removed as they fall
>> on a straight or nearly straight line. Has anyone implemented a
>> polyline simplification or decimation routine? I don't want to simply
>> smooth the input data.
> Hi,
>
> I haven't tried this, but I believe that you can use MESH_DECIMATE using
> your X, Y vertices coupled with a faked Z value. This is from the
> online description of MESH_DECIMATE
>
>> The MESH_DECIMATE function reduces the density of geometry
>> while preserving as much of the original data as possible.

Here is a program that does what Ben suggests.

Karl

PRO coastline

 filename = FILEPATH('states2.sav',
SUBDIRECTORY=['examples','demo','demodata'])
 RESTORE, filename

 ; pick a state and get its outline data
 n = 57
 PRINT, "State is ", states[n].state
 outline = *states[n].poutline
 ; free stuff we do not need
 PTR_FREE, states.poutline

 ; build vertex array of outline, plus another copy of the outline
stacked on top in Z
 nPoints = N_ELEMENTS(outline[0,*])
 pts = FLTARR(3,nPoints*2)
 pts[0,0:nPoints-1] = outline[0,0:nPoints-1]
 pts[1,0:nPoints-1] = outline[1,0:nPoints-1]
 pts[2,0:nPoints-1] = 0
 pts[0,nPoints:2*nPoints-1] = outline[0,0:nPoints-1]

Page 1 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3264
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=19029&goto=39215#msg_39215
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=39215
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 pts[1,nPoints:2*nPoints-1] = outline[1,0:nPoints-1]
 pts[2,nPoints:2*nPoints-1] = 10

 ; build connectivity array to make quads between the two outlines.
 ; this will look like an extrusion of the outline
 conn = LONARR(5 * nPoints)
 conn[LINDGEN(nPoints)*5] = 4
 conn[LINDGEN(nPoints)*5+1] = LINDGEN(nPoints)
 conn[LINDGEN(nPoints)*5+2] = LINDGEN(nPoints) + 1
 conn[LINDGEN(nPoints)*5+3] = LINDGEN(nPoints) + nPoints + 1
 conn[LINDGEN(nPoints)*5+4] = LINDGEN(nPoints) + nPoints
 conn[5 * nPoints - 3] = nPoints
 conn[5 * nPoints - 2] = 0

 ; look at the original extrusion
 oPolygon1 = OBJ_NEW('IDLgrPolygon', pts, POLYGON=conn, COLOR=[255,0,0])
 xobjview, oPolygon1

 ; decimate and look at the decimated extrusion
 n = MESH_DECIMATE(pts, conn, new_conn, PERCENT_VERTICES=50)
 oPolygon2 = OBJ_NEW('IDLgrPolygon', pts, POLYGON=new_conn,
COLOR=[0,255,0])
 xobjview, oPolygon2

 ; Now pull out the vertices that remain after the decimation

 ; First, filter out the 3's from the conn list
 ; Replace the 3's with a "big" value that we'll filter out later
 i = LINDGEN(N_ELEMENTS(new_conn)/4)*4
 line_conn = new_conn
 line_conn[i] = nPoints

 ; Now keep only the vert indicies from the decimated list that are
 ; smaller than nPoints. This gets rid of all the verts from the top
 ; of the extruded outline.
 i = WHERE(line_conn LT nPoints)
 line_conn = line_conn[i]

 ; Now sort and uniq the list, so that we only get one of each vertex,
 ; and in the right order.
 ; Otherwise, we'd have duplicate verts introduced by the triangles.
 line_conn = line_conn[UNIQ(line_conn, SORT(line_conn))]

 PRINT, nPoints, ' points in the original (red) outline.'
 PRINT, N_ELEMENTS(line_conn), ' points in the decimated (green)
outline.'

 oPolyline1 = OBJ_NEW('IDLgrPolyline', pts[*, 0:nPoints-1],

Page 2 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

COLOR=[255,0,0])
 oPolyline2 = OBJ_NEW('IDLgrPolyline', pts[*,line_conn], COLOR=[0,255,0])
 xobjview, [oPolyline1, oPolyline2], /BLOCK
 OBJ_DESTROY, [oPolygon1, oPolygon2, oPolyline1, oPolyline2]
END

Page 3 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

