Subject: Re: Randomu Period
Posted by jargoogle on Sat, 01 May 2004 18:50:37 GMT

View Forum Message <> Reply to Message

| picked up the article which the randomu help page refers to, went
through my Numerical Recipes book (also referred to), and here's
basically what | think randomu is doing:

1) Based on the Lehmer generator (of the class of prime modulus
multiplicative linear congruential generators), the basic algorithm
is:

(i) modulus: m - a large prime number

(i) multiplier: a - an integer in the range 2 to m-1
(i) z(n+1) = f(z(n)) for n=1,2...

(iv) f(z) = az mod m

Most likely, RSI/IDL has followed the Park/Miller article and used

mM=2147483647="7fffffff'x
a=16807

This particular implementation has a period of 2231-1, though there

are some problems with serial correlations which are compensated by a
modification borrowed from or hinted by Numerical Recipes' ranl
function (See next point).

2) Bays-Durham shuffle. Basically, to break up low order
correlations, instead of generating a single step in the sequence of
1(iv) above, generate N steps, filling an array. The N+1th step is
then used to select one of the N previously computed values. That
previously computed value becomes the output while the N+1th value
takes its place in the array. Keep track of the N+1th value to seed
the N+2th step.

if (firstTime) then begin
al0] = seed
fori =1, N-1 do a[i] = f(a[i-1])
aNext = f(a[N-1])
endif else begin
aNext = f(seed)
endelse
index = someConversion(aNext) ; Scales aNext to between 0 and N-1
output = afindex]
a[index] = aNext
seed = aNext

According to Numerical Recipes, when the above modification is made to

Page 1 of 2 ---- Generated from conp. | ang.idl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5033
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=19109&goto=39252#msg_39252
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=39252
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

the Lehmer generator AND Schrage's method is employed (it's not clear
whether IDL uses Schrage's technique), then the output is

statistically random as long as the number of calls to the routine are
kept below 1 billion or so.

3) Implementation. The following is reverse engineering on my part.
| actually am not sure what IDL is doing here, but it appears that in
randomu (IDL 5.3 and 5.6):

m = "7fffffff'x
a="?
N = 34? 367

i) The seed. The seed is used to initialize the sequence, basically
giving a starting z in f(z). Those who use randomu know that you only
set the seed once:

seed =1
num = randomu(seed,1)

and never again modify seed yourself. IDL takes over updating the
seed at that point.

i) The shuffle array. The array that comes back by way of seed has
36 elements. If you print the elements you find something like:

seed[0] = ANext
seed[1] = long(output * "7fffffff'x)
seed[i] = random long, i=2 to 35 (one of which is aNext)

| think that elements 2 through 35 actually store the shuffle array.

IDL seems to have chosen to implement the shuffle with 34 elements.
The first element tracks the seed value so that the overall sequence
proceeds forward. The second element just seems to be a place holder
for the output.

JG.

Page 2 of 2 ---- Cenerated from conp. |l ang.idl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php

